【自动化测试】:selenium破解 滑动验证码的问题

时间:2024-02-19 11:20:43

在测试中,系统登录用到滑动验证码,根据系统验证码图片的策略,分为有两种定位模式;

 

 

左边的图是不带缺口的,需要点击拖动之后才有缺口模块图片出来;

右边的是带缺口的的背景图,以及缺口滑块的图;

我们在自动化测试,拖动滑块右移,主要难点就是确定缺口的横坐标X;

两种定位模式有啥区别呢?

主要体现在识别图片上缺口的位置上;

左边的识别方式是:保存无缺口的图1和有缺口的图2,对比两张图所有的RBG像素点,得到不一样的像素点,得到缺口的坐标位置;

右边的识别方式是:保存缺块图3和缺块背景图4,通过OpenCV提供了一个函数cv2.matchTemplate(),在较大背景图像4中搜索和查找模板图像3位置的方法。

我们系统用的是右边的方式,在鼠标放到滑动验证码拖动块上,图片显示出来,具体代码如下:

from PIL import Image
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By

from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import cv2
import numpy as np
from io import BytesIO
import time
import requests
import os


class CrackSlider():
    """
    通过浏览器截图,识别验证码中缺口位置,获取需要滑动距离,并模仿人类行为破解滑动验证码
    """
    def __init__(self):
        self.url = \'https://localhost/test/#/login\'
        self.driver = webdriver.Firefox()
        self.wait = WebDriverWait(self.driver, 20)
        self.zoom = 1

    def open(self):
        self.driver.get(self.url)

    def get_pic(self):
        time.sleep(2)
       # 因为验证码模块需要鼠标位移上,才会显示,所以为了方便,通过js修改了显示属性,让元素可见
        js = "document.getElementsByClassName(\'yidun_panel\')[0].style.display=\'block\';"
        # 调用js脚本
        self.driver.execute_script(js)
        target = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, \'yidun_bg-img\')))
        template = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, \'yidun_jigsaw\')))
        target_link = target.get_attribute(\'src\')
        template_link = template.get_attribute(\'src\')
        target_img = Image.open(BytesIO(requests.get(target_link).content))
        template_img = Image.open(BytesIO(requests.get(template_link).content))
        target_img.save(\'target.jpg\')
        template_img.save(\'template.png\')
        local_img = Image.open(\'target.jpg\')
        size_loc = local_img.size
        self.zoom = 320 / int(size_loc[0])

    def crack_slider(self):
        slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, \'yidun_slider\')))
        ActionChains(self.driver).click_and_hold(slider).perform()

        for track in tracks[\'forward_tracks\']:
            ActionChains(self.driver).move_by_offset(xoffset=track, yoffset=0).perform()

        time.sleep(0.5)
        #for back_tracks in tracks[\'back_tracks\']:
        #    ActionChains(self.driver).move_by_offset(xoffset=back_tracks, yoffset=0).perform()

        ActionChains(self.driver).move_by_offset(xoffset=-4, yoffset=0).perform()
        ActionChains(self.driver).move_by_offset(xoffset=4, yoffset=0).perform()
        time.sleep(0.5)

        ActionChains(self.driver).release().perform()

    def get_tracks(self, distance):
        print(distance)
        distance += 20
        v = 0
        t = 0.2
        forward_tracks = []
        current = 0
        mid = distance * 3 / 5  #减速阀值
        while current < distance:
            if current < mid:
                a = 5  #加速度为+2
            else:
                a = -3  #加速度-3
            s  = v * t + 0.5 * a * (t ** 2)
            v = v + a * t
            current += s
            forward_tracks.append(round(s))

        back_tracks = [-3, -3, -2, -2, -2, -2, -2, -1, -1, -1]
        return {\'forward_tracks\': forward_tracks, \'back_tracks\': back_tracks}

    def match(self, target, template):
        img_rgb = cv2.imread(target)
        img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
        template = cv2.imread(template, 0)
        run = 1
        w, h = template.shape[::-1]
        print(w, h)
        res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
        run = 1

        # 使用二分法查找阈值的精确值
        L = 0
        R = 1
        while run < 20:
            run += 1
            threshold = (R + L) / 2
            print(threshold)
            if threshold < 0:
                print(\'Error\')
                return None
            loc = np.where(res >= threshold)
            print(len(loc[1]))
            if len(loc[1]) > 1:
                L += (R - L) / 2
                print(\'目标区域起点x坐标为1:%d\' % loc[1][0])
            elif len(loc[1]) == 1:
                print(\'目标区域起点x坐标为2:%d\' % loc[1][0])
                break
            elif len(loc[1]) < 1:
                #print(\'目标区域起点x坐标为3:%d\' % loc[1][0])
                R -= (R - L) / 2
        return loc[1][0]




if __name__ == \'__main__\':
    cs = CrackSlider()
    cs.open()
    target = \'target.jpg\'
    template = \'template.png\'
    cs.get_pic()
    distance = cs.match(target, template)
    tracks = cs.get_tracks((distance + 7) * cs.zoom)  # 对位移的缩放计算
    cs.crack_slider()