目录
第1章点位精度评定
1.1 简介
下图显示了一系列的散点。点位精度评定就是计算一些数值,用来评定这些点的离散程度。精度评定数值越小说明点的离散程度越小,精度越高。
1.2 期望
上图的圆心和椭圆中心,是散点的真实位置。假定其坐标为,那么就是随机变量的期望,就是随机变量的期望。
期望的数值,有可能是已知的,也可能是未知的。在未知的情况下,需要对期望进行估值。一般情况下,期望的估值采用的是算术平均值,即:
1.3 方差
方差用来描述随机变量的离散程度,它的数值越小说明离散度越低。
随机变量的方差:
随机变量的方差:
注意:如果随机变量的期望使用的是估计值,则方差的估值为。把改成的原因在于:求出后,的*度由变成了。
1.4 标准差
标准差也叫中误差,它是方差的平方根,即:
随机变量的标准差: 或
随机变量的标准差: 或
1.5 协方差
随机变量、之间的协方差:
同样的,如果期望和使用的是估计值,则按下式计算
1.6 DRMS
离散随机变量的均方根RMS(Root Mean Square)为:
点位误差里的RMS其实是距离均方根差(DRMS),即:
将代入上式,可得
1.7 2DRMS
双倍距离均方根的计算公式如下:
1.8 CEP
圆概率误差CEP(Circular Error Probable)的含义:以为圆心,CEP为半径画一个圆,点落入圆内的概率为50%。其计算公式如下:
1.9 CEP95
CEP95(也被称之为R95)的含义:以为圆心,CEP95为半径画一个圆,点落入圆内的概率为95%。其计算公式如下:
1.10 CEP99
CEP99的含义:以为圆心,CEP99为半径画一个圆,点落入圆内的概率为99%。其计算公式如下:
1.11 对比
CEP、CEP95、CEP99之间是有严格的比例关系的;DRMS、2DRMS之间也是有严格的比例关系的;那么CEP与DRMS有什么关系呢?
假定,则:,。此时。
换句话说就是CEP与DRMS之间有着近似的转换公式:
这几个统计量从小到大依次为:CEP、DRMS、CEP95、2DRMS、CEP99。
以为圆心,各个统计量为半径,点落入这个圆的概率见下表:
统计量 |
概率 |
CEP |
50% |
DRMS |
63%~68% |
CEP95 |
95% |
2DRMS |
95%~98% |
CEP99 |
99% |
1.12 SEP
SEP的含义:以为球心,SEP为半径画一个圆球,点落入球内的概率为50%。其计算公式如下:
1.13 误差椭圆
在二维平面内,点位沿着任意方向的方差按下式计算:
化简后可得:
上式中
注意:表示原点到的方位角。
当时()取最大值;
当时()取最小值。
这里就是误差椭圆的长半轴,就是误差椭圆的短半轴,是长半轴的方位角。
1.14 置信椭圆
长半轴为、短半轴为的椭圆被称之为标准误差椭圆。置信椭圆是标准误差椭圆的倍。
点落入置信椭圆内的概率为
将代入上式可求出点落入标准误差椭圆内的概率为39.35%。也就是说置信度39.35%的置信椭圆就是标准误差椭圆。
1.15 误差椭球
在三维空间,点位沿着任意方向的方差按下式计算:
上式中的是随机变量的方差、协方差矩阵。
注意方向是单位向量,即满足
现在的问题是:何时最大?何时最小?它的实质就是在满足的条件下,求出的极值。
可根据拉格朗日乘数法求极值,其步骤为:
构造拉格朗日函数,然后求解如下方程组:
记(即一个数对一个列向量求导),则。根据上式可知取极值时。
满足的是矩阵的特征值,而是与对应的特征向量。表示需要将特征向量单位化。
求出矩阵的特征值和特征向量后,矩阵可被对角化,即:
上式中是由特征值组成的对角阵,即。
矩阵的第列是对应的单位特征向量。此时:
记,它的几何意义为:对向量做正交变换,得到向量,此时:
这里就是误差椭球的三个半轴,从大到小依次为长半轴、中半轴、短半轴。这三个半轴的方向就是特征向量的方向,它们是相互垂直的。
以椭球的三个半轴分别为轴建立一个新的三维直角坐标系,坐标系到的正交变换矩阵就是。
1.16 求解误差椭球
本节将求解矩阵的特征值、特征向量
注意上式中:
展开后可以得到一个一元三次方程:,其中
可以去除这个一元三次方程的二次项,如下式所示:
其中
一元三次方程的三个根为:
上式中
这三个根就是矩阵的特征值。因为是正定的,所以这三个特征值必定都是大于零的实数。
下面是矩阵的伴随矩阵:
将代入上式,每一列就是对应的一个特征向量,请选用长度最大的特征向量并将其单位化。
注意:按上述方法求出的特征向量有可能为零,此时至少有两个特征值是相等的。换句话说就是上述求解特征向量的算法要求三个特征值均不相等。
1.17 置信椭球
三个半轴为的椭球是标准误差椭球,置信椭圆是标准误差椭圆的倍。
点落入置信椭球内的概率为
将代入上式可求出点落入标准误差椭球内的概率为19.87%。也就是说置信度19.87%的置信椭球就是标准误差椭球。