折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。
下面我给大家介绍一下如何用pyecharts画出各种折线图
1.基本折线图
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y=[100,200,300,400,500,400,300] line=( Line() .set_global_opts( tooltip_opts=opts.TooltipOpts(is_show=False), xaxis_opts=opts.AxisOpts(type_="category"), yaxis_opts=opts.AxisOpts( type_="value", axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), ) .add_xaxis(xaxis_data=x) .add_yaxis( series_name="基本折线图", y_axis=y, symbol="emptyCircle", is_symbol_show=True, label_opts=opts.LabelOpts(is_show=False), ) ) line.render_notebook()
series_name:图形名称
y_axis:数据
symbol:标记的图形,pyecharts提供的类型包括\'circle\', \'rect\', \'roundRect\', \'triangle\', \'diamond\', \'pin\', \'arrow\', \'none\',也可以通过 \'image://url\' 设置为图片,其中 URL 为图片的链接。is_symbol_show:是否显示 symbol
2.连接空数据(折线图)
有时候我们要分析的数据存在空缺值,需要进行处理才能画出折线图
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y=[100,200,300,400,None,400,300] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis( series_name="连接空数据(折线图)", y_axis=y, is_connect_nones=True ) .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据")) ) line.render_notebook()
3.多条折线重叠
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2线",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")) ) line.render_notebook()
4.平滑曲线折线图
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1, is_smooth=True) .add_yaxis(series_name="y2线",y_axis=y2, is_smooth=True) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")) ) line.render_notebook()
is_smooth:平滑曲线标志
5.阶梯图
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y1=[100,200,300,400,100,400,300] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1, is_step=True) .set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图")) ) line.render_notebook()
is_step:阶梯图参数
6.变换折线的样式
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y1=[100,200,300,400,100,400,300] line = ( Line() .add_xaxis(xaxis_data=x) .add_yaxis( "y1", y1, symbol="triangle", symbol_size=30, linestyle_opts=opts.LineStyleOpts(color="red", width=4, type_="dashed"), itemstyle_opts=opts.ItemStyleOpts( border_width=3, border_color="yellow", color="blue" ), ) .set_global_opts(title_opts=opts.TitleOpts(title="Line-ItemStyle")) ) line.render_notebook()
linestyle_opts:折线样式配置
color设置颜色,width设置宽度
type设置类型,有\'solid\', \'dashed\', \'dotted\'三种类型
itemstyle_opts:图元样式配置,border_width设置描边宽度,border_color设置描边颜色,color设置纹理填充颜色
7.折线面积图
import pyecharts.options as opts from pyecharts.charts import Line x=[\'星期一\',\'星期二\',\'星期三\',\'星期四\',\'星期五\',\'星期七\',\'星期日\'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .add_yaxis(series_name="y2线",y_axis=y2,areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")) ) line.render_notebook()
8.双横坐标折线图
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.commons.utils import JsCode js_formatter = """function (params) { console.log(params); return \'降水量 \' + params.value + (params.seriesData.length ? \':\' + params.seriesData[0].data : \'\'); }""" line=( Line() .add_xaxis( xaxis_data=[ "2016-1", "2016-2", "2016-3", "2016-4", "2016-5", "2016-6", "2016-7", "2016-8", "2016-9", "2016-10", "2016-11", "2016-12", ] ) .extend_axis( xaxis_data=[ "2015-1", "2015-2", "2015-3", "2015-4", "2015-5", "2015-6", "2015-7", "2015-8", "2015-9", "2015-10", "2015-11", "2015-12", ], xaxis=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), ) .add_yaxis( series_name="2015 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, color="#d14a61", y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .add_yaxis( series_name="2016 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, color="#6e9ef1", y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .set_global_opts( legend_opts=opts.LegendOpts(), tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"), xaxis_opts=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), yaxis_opts=opts.AxisOpts( type_="value", splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ), ) ) line.render_notebook()
9.用电量随时间变化
import pyecharts.options as opts from pyecharts.charts import Line x_data = [ "00:00", "01:15", "02:30", "03:45", "05:00", "06:15", "07:30", "08:45", "10:00", "11:15", "12:30", "13:45", "15:00", "16:15", "17:30", "18:45", "20:00", "21:15", "22:30", "23:45", ] y_data = [ 300, 280, 250, 260, 270, 300, 550, 500, 400, 390, 380, 390, 400, 500, 600, 750, 800, 700, 600, 400, ] line=( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="用电量", y_axis=y_data, is_smooth=True, label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .set_global_opts( title_opts=opts.TitleOpts(title="一天用电量分布", subtitle="纯属虚构"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), xaxis_opts=opts.AxisOpts(boundary_gap=False), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} W"), splitline_opts=opts.SplitLineOpts(is_show=True), ), visualmap_opts=opts.VisualMapOpts( is_piecewise=True, dimension=0, pieces=[ {"lte": 6, "color": "green"}, {"gt": 6, "lte": 8, "color": "red"}, {"gt": 8, "lte": 14, "color": "yellow"}, {"gt": 14, "lte": 17, "color": "red"}, {"gt": 17, "color": "green"}, ], pos_right=0, pos_bottom=100 ), ) .set_series_opts( markarea_opts=opts.MarkAreaOpts( data=[ opts.MarkAreaItem(name="早高峰", x=("07:30", "10:00")), opts.MarkAreaItem(name="晚高峰", x=("17:30", "21:15")), ] ) ) ) line.render_notebook()
这里给大家介绍几个关键参数:
①visualmap_opts:视觉映射配置项,可以将折线分段并设置标签(is_piecewise),将不同段设置颜色(pieces);
②markarea_opts:标记区域配置项,data参数可以设置标记区域名称和位置。
更多python数据分析教程,请扫码关注公众号【python数据分析之禅】