keras和tensorflow搭建DNN、CNN、RNN手写数字识别

时间:2021-12-13 16:32:02

MNIST手写数字集

  MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集。手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容。

文件名 大小 用途
train-images-idx3-ubyte.gz 9.45MB 训练图像数据
train-labels-idx1-ubyte.gz 0.03MB 训练图像的标签
t10k-images-idx3-ubyte.gz 1.57MB 测试图像数据
t10k-labels-idx1-ubyte.gz 4.4KB 测试图像的标签

下载MNIST数据集

方法一、官网下载(4个gz文件,图像的取值在0~1之间)

方法二、谷歌下载(1个npz文件,图像的取值在0~255之间)

方法三、通过tensorflow或keras代码获取

from tensorflow.examples.tutorials.mnist import input_data
# tensorflow(1.7版本以前)
# 从MNIST_data/中读取MNIST数据。当数据不存在时,会自动执行下载
mnist = input_data.read_data_sets("./mnist/", one_hot=True) # tensorflow(1.7版本以后)
import tensorflow as tf
(train_x, train_y), (test_x, test_y) = tf.keras.datasets.mnist.load_data(path='mnist.npz') # keras代码获取
from keras.datasets import mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data() # 通过numpy代码获取.npz中的数据
f = np.load(path)
x_train, y_train = f['x_train'], f['y_train']
x_test, y_test = f['x_test'], f['y_test']
f.close()

  如果通过代码下载MNIST的方法,不FQ的话,可能无法顺利下载MNSIT数据集,因此我建议大家还是先手动下载好,再来通过代码导入。

MNIST图像

  训练数据集包含 60,000 个样本, 测试数据集包含 10,000 样本。在 MNIST 数据集中的每张图片由 28 x 28(=784) 个像素点构成, 每个像素点用一个灰度值表示。

  我们可以通过下面python代码下载MNIST数据集,并窥探一下MNIST数据集的内部数据集的划分,以及手写数字的长相。

import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
# 从MNIST_data/中读取MNIST数据。当数据不存在时,会自动执行下载
mnist = input_data.read_data_sets('./mnist', one_hot=True) # 将数组张换成图片形式
print(mnist.train.images.shape) # 训练数据图片(55000, 784)
print(mnist.train.labels.shape) # 训练数据标签(55000, 10)
print(mnist.test.images.shape) # 测试数据图片(10000, 784)
print(mnist.test.labels.shape) # 测试数据图片(10000, 10)
print(mnist.validation.images.shape) # 验证数据图片(5000, 784)
print(mnist.validation.labels.shape) # 验证数据图片(5000, 784) print(mnist.train.labels[1]) # [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
image = mnist.train.images[1].reshape(28, 28)
fig = plt.figure("图片展示")
plt.imshow(image,cmap='gray')
plt.axis('off') #不显示坐标尺寸
plt.show()

keras和tensorflow搭建DNN、CNN、RNN手写数字识别

  在画出数字的同时,同时取出标签.

from tensorflow.examples.tutorials.mnist import input_data
import math
import matplotlib.pyplot as plt
import numpy as np mnist = input_data.read_data_sets('./mnist', one_hot=True) # 画单张mnist数据集的数字
def drawdigit(position,image, title):
plt.subplot(*position) # 星号元组传参
plt.imshow(image, cmap='gray_r')
plt.axis('off')
plt.title(title) # 取一个batch的数据,然后在一张画布上画batch_size个子图
def batchDraw(batch_size):
images, labels = mnist.train.next_batch(batch_size)
row_num = math.ceil(batch_size ** 0.5) # 向上取整
column_num = row_num
plt.figure(figsize=(row_num, column_num)) # 行.列
for i in range(row_num):
for j in range(column_num):
index = i * column_num + j
if index < batch_size:
position = (row_num, column_num, index+1)
image = images[index].reshape(28, 28)
# 取出列表中最大数的索引
title = 'actual:%d' % (np.argmax(labels[index]))
drawdigit(position, image, title) if __name__ == '__main__':
batchDraw(16)
plt.show()

keras和tensorflow搭建DNN、CNN、RNN手写数字识别

代码说明:

mnist = input_data.read_data_sets("./mnist/", one_hot=True, reshape=False)

  图像是由RGB三个数组组成的,而灰度图只是其中一个数组,而图像是由像素组成,每个像素的值在0~225之间,MNIST数据集中的每个数字都有28*28=784个像素值.上面的代码如果reshape=True(默认),MNIST数据的shape=(?, 784),如果reshape=False MNIST数据为(?, 28,28,1).

Keras

DNN网络

from keras.models import Model
from keras.layers import Input, Dense, Dropout
from keras import regularizers
from keras.optimizers import Adam from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("mnist/", one_hot=True)
x_train = mnist.train.images # 训练数据 (55000, 784)
y_train = mnist.train.labels # 训练标签
x_test = mnist.test.images
y_test = mnist.test.images # DNN网络结构
inputs = Input(shape=(784,))
h1 = Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01))(inputs) # 权重矩阵l2正则化
h1 = Dropout(0.2)(h1)
h2 = Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01))(h1) # 权重矩阵l2正则化
h2 = Dropout(0.2)(h2)
h3 = Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01))(h2) # 权重矩阵l2正则化
h3 = Dropout(0.2)(h3)
outputs = Dense(10, activation='softmax', kernel_regularizer=regularizers.l2(0.01))(h3) # 权重矩阵l2正则化
model = Model(input=inputs, output=outputs) # 编译模型
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08) # epsilon模糊因子
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) # 交叉熵损失函数 # 开始训练
model.fit(x=x_train, y=y_train, validation_split=0.1, batch_size=128, epochs=4)
model.save('k_DNN.h5')

CNN网络

from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Reshape, Dense
from keras import regularizers
from keras.optimizers import Adam
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./mnist/", one_hot=True, reshape=False) x_train = mnist.train.images # 训练数据 (55000, 28, 28, 1)
y_train = mnist.train.labels # 训练标签
x_test = mnist.test.images
y_test = mnist.test.images # 网络结构
input = Input(shape=(28, 28, 1))
h1 = Conv2D(filters=64, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')(input)
h1 = MaxPooling2D(pool_size=2, strides=2, padding='valid')(h1) h1 = Conv2D(filters=32, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')(h1)
h1 = MaxPooling2D()(h1) h1 = Conv2D(filters=16, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')(h1)
h1 = Reshape((16 * 7 * 7,))(h1) # h1.shape (?, 16*7*7) output = Dense(10, activation="softmax", kernel_regularizer=regularizers.l2(0.01))(h1)
model = Model(input=input, output=output)
model.summary() # 编译模型
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
model.compile(optimizer=opt, loss="categorical_crossentropy", metrics=["accuracy"]) # 开始训练
model.fit(x=x_train, y=y_train, validation_split=0.1, epochs=5) model.save('k_CNN.h5')

RNN网络

from keras.models import Model
from keras.layers import Input, LSTM, Dense
from keras import regularizers
from keras.optimizers import Adam from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./mnist/", one_hot=True)
x_train = mnist.train.images # (28, 28, 1)
x_train = x_train.reshape(-1, 28, 28)
y_train = mnist.train.labels # RNN网络结构
inputs = Input(shape=(28, 28))
h1 = LSTM(64, activation='relu', return_sequences=True, dropout=0.2)(inputs)
h2 = LSTM(64, activation='relu', dropout=0.2)(h1)
outputs = Dense(10, activation='softmax', kernel_regularizer=regularizers.l2(0.01))(h2)
model = Model(input=inputs, output=outputs) # 编译模型
opt = Adam(lr=0.003, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x=x_train, y=y_train, validation_split=0.1, batch_size=128, epochs=5) model.save('k_RNN.h5')

Tensorflow

DNN网络

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./mnist", one_hot=True)
# train image shape: (55000, 784)
# trian label shape: (55000, 10)
# val image shape: (5000, 784)
# test image shape: (10000, 784)
epochs = 2
output_size = 10
input_size = 784
hidden1_size = 512
hidden2_size = 256
batch_size = 1000
learning_rate_base = 0.005
unit_list = [784, 512, 256, 10]
batch_num = mnist.train.labels.shape[0] // batch_size # 全连接神经网络
def dense(x, w, b, keeppord):
linear = tf.matmul(x, w) + b
activation = tf.nn.relu(linear)
y = tf.nn.dropout(activation,keeppord)
return y def DNNModel(image, w, b, keeppord):
dense1 = dense(image, w[0], b[0],keeppord)
dense2 = dense(dense1, w[1], b[1],keeppord)
output = tf.matmul(dense2, w[2]) + b[2]
return output # 生成网络的权重
def gen_weights(unit_list):
w = []
b = []
# 遍历层数
for i in range(len(unit_list)-1):
sub_w = tf.Variable(tf.random_normal(shape=[unit_list[i], unit_list[i+1]]))
sub_b = tf.Variable(tf.random_normal(shape=[unit_list[i+1]]))
w.append(sub_w)
b.append(sub_b)
return w, b x = tf.placeholder(tf.float32, [None, 784])
y_true = tf.placeholder(tf.float32, [None, 10])
keepprob = tf.placeholder(tf.float32)
global_step = tf.Variable(0) w, b = gen_weights(unit_list)
y_pre = DNNModel(x, w, b, keepprob)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=y_pre, labels=y_true))
tf.summary.scalar("loss", loss) # 收集标量
opt = tf.train.AdamOptimizer(0.001).minimize(loss, global_step=global_step)
predict = tf.equal(tf.argmax(y_pre, axis=1), tf.argmax(y_true, axis=1)) # 返回每行或者每列最大值的索引,判断是否相等
acc = tf.reduce_mean(tf.cast(predict, tf.float32))
tf.summary.scalar("acc", acc) # 收集标量
merged = tf.summary.merge_all() # 和并变量
saver = tf.train.Saver() # 保存和加载模型
init = tf.global_variables_initializer() # 初始化全局变量
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter("./logs/tensorboard", tf.get_default_graph()) # tensorboard 事件文件
for i in range(batch_num * epochs):
x_train, y_train = mnist.train.next_batch(batch_size)
summary, _ = sess.run([merged, opt], feed_dict={x:x_train, y_true:y_train, keepprob: 0.75})
writer.add_summary(summary, i) # 将每次迭代后的变量写入事件文件
# 评估模型在验证集上的识别率
if i % 50 == 0:
feeddict = {x: mnist.validation.images, y_true: mnist.validation.labels, keepprob: 1.} # 验证集
valloss, accuracy = sess.run([loss, acc], feed_dict=feeddict)
print(i, 'th batch val loss:', valloss, ', accuracy:', accuracy) saver.save(sess, './checkpoints/tfdnn.ckpt') # 保存模型
print('测试集准确度:', sess.run(acc, feed_dict={x:mnist.test.images, y_true:mnist.test.labels, keepprob:1.})) writer.close()

CNN网络

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data epochs = 10
batch_size = 100
mnist = input_data.read_data_sets("mnist/", one_hot=True, reshape=False)
batch_nums = mnist.train.labels.shape[0] // batch_size # 卷积结构
def conv2d(x, w, b):
# x = (?, 28,28,1)
# filter = [filter_height, filter_width, in_channels, out_channels]
# data_format = [批次,高度,宽度,通道] # 第一个和第四个必须是1
return tf.nn.conv2d(x, filter=w, strides=[1, 1, 1, 1], padding='SAME') + b
def pool(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义网络结构
def cnn_net(x, keepprob):
# x = reshape=False (?, 28,28,1)
w1 = tf.Variable(tf.random_normal([5, 5, 1, 64]))
b1 = tf.Variable(tf.random_normal([64]))
w2 = tf.Variable(tf.random_normal([5, 5, 64, 32]))
b2 = tf.Variable(tf.random_normal([32]))
w3 = tf.Variable(tf.random_normal([7 * 7 * 32, 10]))
b3 = tf.Variable(tf.random_normal([10]))
hidden1 = pool(conv2d(x, w1, b1))
hidden1 = tf.nn.dropout(hidden1, keepprob)
hidden2 = pool(conv2d(hidden1, w2, b2))
hidden2 = tf.reshape(hidden2, [-1, 7 * 7 * 32])
hidden2 = tf.nn.dropout(hidden2, keepprob)
output = tf.matmul(hidden2, w3) + b3
return output # 定义所需占位符
x = tf.placeholder(tf.float32, [None, 28, 28, 1])
y_true = tf.placeholder(tf.float32, [None, 10])
keepprob = tf.placeholder(tf.float32) # 在训练模型时,随着训练的逐步降低学习率。该函数返回衰减后的学习率。
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(0.01, global_step, 100, 0.96, staircase=True) # 训练所需损失函数
logits = cnn_net(x, keepprob)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y_true))
opt = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step) # 定义评估模型
predict = tf.equal(tf.argmax(logits, 1), tf.argmax(y_true, 1)) # 预测值
accuracy = tf.reduce_mean(tf.cast(predict, tf.float32)) # 验证值 init = tf.global_variables_initializer()
# 开始训练
with tf.Session() as sess:
sess.run(init)
for k in range(epochs):
for i in range(batch_nums):
train_x, train_y = mnist.train.next_batch(batch_size)
sess.run(opt, {x: train_x, y_true: train_y, keepprob: 0.75})
# 评估模型在验证集上的识别率
if i % 50 == 0:
acc = sess.run(accuracy, {x: mnist.validation.images[:1000], y_true: mnist.validation.labels[:1000], keepprob: 1.})
print(k, 'epochs, ', i, 'iters, ', ', acc :', acc)

RNN网络

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data epochs = 10
batch_size = 1000
mnist = input_data.read_data_sets("mnist/", one_hot=True)
batch_nums = mnist.train.labels.shape[0] // batch_size # 定义网络结构
def RNN_Model(x, batch_size, keepprob):
# rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [28, 28]]
rnn_cell = tf.nn.rnn_cell.LSTMCell(28)
rnn_drop = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, output_keep_prob=keepprob)
# 创建由多个RNNCell组成的RNN单元。
multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell([rnn_drop] * 2)
initial_state = multi_rnn_cell.zero_state(batch_size, tf.float32)
# 创建由RNNCell指定的递归神经网络cell。执行完全动态展开inputs
outputs, states = tf.nn.dynamic_rnn(cell=multi_rnn_cell, inputs=x, dtype=tf.float32, initial_state=initial_state )
# outputs 的shape为[batch_size, max_time, 28] w = tf.Variable(tf.random_normal([28, 10]))
b = tf.Variable(tf.random_normal([10]))
output = tf.matmul(outputs[:, -1, :], w) + b
return output, states # 定义所需占位符
x = tf.placeholder(tf.float32, [None, 28, 28])
y_true = tf.placeholder(tf.float32, [None, 10])
keepprob = tf.placeholder(tf.float32)
global_step = tf.Variable(0)
# 在训练模型时,随着训练的逐步降低学习率。该函数返回衰减后的学习率。
learning_rate = tf.train.exponential_decay(0.01, global_step, 10, 0.96, staircase=True) # 训练所需损失函数
y_pred, states = RNN_Model(x, batch_size, keepprob)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=y_true))
opt = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step) # 最小化损失函数
predict = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1)) # 预测值
acc = tf.reduce_mean(tf.cast(predict, tf.float32)) # 精度
init = tf.global_variables_initializer()
# 开始训练
with tf.Session() as sess:
sess.run(init)
for k in range(epochs):
for i in range(batch_nums):
train_x, train_y = mnist.train.next_batch(batch_size)
sess.run(opt, {x: train_x.reshape((-1, 28, 28)), y_true: train_y, keepprob: 0.8})
# 评估模型在验证集上的识别率
if i % 50 == 0:
val_losses = 0
accuracy = 0
val_x, val_y = mnist.validation.next_batch(batch_size)
for i in range(val_x.shape[0]):
val_loss, accy = sess.run([loss, acc], {x: val_x.reshape((-1, 28, 28)), y_true: val_y, keepprob: 1.})
val_losses += val_loss
accuracy += accy
print('val_loss is :', val_losses / val_x.shape[0], ', accuracy is :', accuracy / val_x.shape[0])

加载模型

  深度学习的训练是需要很长时间的,我们不可能每次需要预测都花大量的时间去重新训练,因此我们想出一个方法,保存模型,也就是保存我们训练好的参数.

import numpy as np
from keras.models import load_model
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./mnist/", one_hot=True, reshape=False) # (?, 28,28,1)
x_test = mnist.test.images # (10000, 28,28,1)
y_test = mnist.test.labels # (10000, 10)
print(y_test[1]) # [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] model = load_model('k_CNN.h5') # 读取模型 # 评估模型
evl = model.evaluate(x=x_test, y=y_test)
evl_name = model.metrics_names
for i in range(len(evl)):
print(evl_name[i], ':\t', evl[i])
# loss : 0.19366768299341203
# acc : 0.9691 test = x_test[1].reshape(1, 28, 28, 1)
y_predict = model.predict(test) # (1, 10)
print(y_predict)
# [[1.6e-06 6.0e-09 9.9e-01 5.8e-10 4.0e-07 2.5e-08 1.72e-06 1.2e-09 2.1e-07 8.5e-08]]
y_true = 'actual:%d' % (np.argmax(y_test[1])) # actual:2
pre = 'actual:%d' % (np.argmax(y_predict)) # actual:2

参考文献:

MNIST数据集探究

Audior的CSDN博客深度学习项目实战计划——汇总