机器学习5- 对数几率回归+Python实现

时间:2024-01-26 20:46:53

1. 对数几率回归

考虑二分类任务,其输出标记 \(y \in \{0, 1\}\),记线性回归模型产生的预测值 \(z=\boldsymbol{w}^T\boldsymbol{x} + b\) 是实值,于是我们需要一个将实值 \(z\) 转换为 \(0/1\)\(g^{-}(\cdot)\)
最理想的单位阶跃函数(unit-step function

\[y = \begin{cases} 0, & z < 0 \\ 0.5, & z = 0 \\ 1, & z > 0 \\ \end{cases} \tag{1.1} \]

并不是连续函数,因此不能作为 \(g^-(\cdot)\) 。于是我们选用对数几率函数logistics function)作为单位阶跃函数的替代函数(surrogate function):

\[y = \frac{1}{1+e^{-z}} \tag{1.2} \]

如下图所示:

对数几率函数是 Sigmoid 函数(即形似 S 的函数)的一种。

将对数几率函数作为 \(g^-(\cdot)\) 得到

\[y = \frac{1}{1+e^{-(\boldsymbol{w}^T\boldsymbol{x} + b)}} \tag{1.3} \]

\[\ln \frac{y}{1-y} = \boldsymbol{w}^T\boldsymbol{x} + b \tag{1.4} \]

若将 \(y\) 视为样本 \(\boldsymbol{x}\) 为正例的可能性,则 \(1-y\) 是其为反例的可能性,两者的比值为

\[\frac{y}{1-y} \tag{1.5} \]

称为几率odds),反映了 \(\boldsymbol{x}\) 作为正例的相对可能性。对几率取对数得到对数几率log odds,或 logit):

\[\ln \frac{y}{1-y} \tag{1.6} \]

所以,式 (1.3) 实际上是用线性回归模型的预测结果取逼近真实标记的对数几率,因此其对应的模型又称为对数几率回归logistic regression, 或 logit regression)。

这种分类学习方法直接对分类可能性进行建模,无需事先假设数据分布,避免了假设分布不准确带来的问题;
它能得到近似概率预测,这对需要利用概率辅助决策的任务很有用;
对率函数是任意阶可导的凸函数,有很好的数学性质,许多数值优化算法都可直接用于求解最优解。

1.1 求解 ω 和 b

将式 (1.3) 中的 \(y\) 视为类后验概率估计 \(p(y = 1 | \boldsymbol{x})\),则式 (1.4) 可重写为

\[\ln \frac{p(y=1 | \boldsymbol{x})}{p(y=0 | \boldsymbol{x})} = \boldsymbol{w}^T\boldsymbol{x} + b \tag{1.7} \]

\[p(y=1|\boldsymbol{x}) = \frac{e^{\boldsymbol{w}^T\boldsymbol{x} + b}}{1+e^{\boldsymbol{w}^T\boldsymbol{x} + b}} \tag{1.8} \]

\[p(y=0|\boldsymbol{x}) = \frac{1}{1+e^{\boldsymbol{w}^T\boldsymbol{x} + b}} \tag{1.9} \]

通过极大似然法maximum likelihood method)来估计 \(\boldsymbol{w}\)\(b\)

给定数据集 \(\{(\boldsymbol{x}_i, y_i)\}^m_{i=1}\),对率回归模型最大化对数似然log-likelihood):

\[\ell(\boldsymbol{w},b)=\sum\limits_{i=1}^m \ln p(y_i|\boldsymbol{x}_i;\boldsymbol{w},b) \tag{1.10} \]

即令每个样本属于其真实标记的概率越大越好。

\(\boldsymbol{\beta} = (\boldsymbol{w};b)\)\(\hat{\boldsymbol{x}} = (\boldsymbol{x};1)\),则 \(\boldsymbol{w}^T\boldsymbol{x} + b\) 可简写为 \(\boldsymbol{\beta}^T\hat{\boldsymbol{x}}\)。再令 \(p_1(\hat{\boldsymbol{x}};\boldsymbol{\beta}) = p(y=1|\hat{\boldsymbol{x}};\boldsymbol{\beta})\)\(p_0(\hat{\boldsymbol{x}};\boldsymbol{\beta}) = p(y=0|\hat{\boldsymbol{x}};\boldsymbol{\beta}) = 1-p_1(\hat{\boldsymbol{x}};\boldsymbol{\beta})\) 。则式 (1.10) 可简写为:

\[p(y_i|\boldsymbol{x}_i;\boldsymbol{w},b) = y_ip_1(\hat{\boldsymbol{x}};\boldsymbol{\beta}) +(1-y_i)p_0(\hat{\boldsymbol{x}};\boldsymbol{\beta}) \tag{1.11} \]

将式 (1.11) 带入 (1.10),并根据式 (1.8) 和 (1.9) 可知,最大化式 (1.10) 等价于最小化

\[\ell(\boldsymbol{\beta}) = \sum\limits_{i=1}^m\Big(-y_i\boldsymbol{\beta}^T\hat{\boldsymbol{x}}_i+\ln\big(1+e^{\boldsymbol{\beta}^T+\hat{\boldsymbol{x}}_i}\big)\Big) \tag{1.12} \]

式 (1.12) 是关于 \(\boldsymbol{\beta}\) 的高阶可导凸函数,根据凸优化理论,经典的数值优化算法如梯度下降法(gradient descent method)、牛顿法(Newton method)等都可求得其最优解,于是得到:

\[\boldsymbol{\beta}^{*} = \underset{\boldsymbol{\beta}}{\text{arg min }}\ell(\boldsymbol{\beta}) \tag{1.13} \]

以牛顿法为例, 其第 \(t+1\) 轮迭代解的更新公式为:

\[\boldsymbol{\beta}^{t+1} = \boldsymbol{\beta}^t-\Big(\frac{\partial^2\ell(\boldsymbol{\beta})}{\partial\boldsymbol{\beta}\ \partial\boldsymbol{\beta}^T}\Big)^{-1}\frac{\partial\ell(\boldsymbol{\beta})}{\partial{\boldsymbol{\beta}}} \tag{1.14} \]

其中关于 \(\boldsymbol{\beta}\) 的一阶、二阶导数分别为:

\[\frac{\partial\ell(\boldsymbol{\beta})}{\partial\boldsymbol{\beta}} = -\sum\limits_{i=1}^m\hat{\boldsymbol{x}}_i(y_i-p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta})) \tag{1.15} \]

\[\frac{\partial^2{\ell(\boldsymbol{\beta})}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^T} = \sum\limits_{i=1}^m\hat{\boldsymbol{x}}_i\hat{\boldsymbol{x}}_i^Tp_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta})(1-p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta})) \tag{1.16} \]

2. 对数几率回归进行垃圾邮件分类

2.1 垃圾邮件分类

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_extraction.text import TfidfVectorizer
from matplotlib.font_manager import FontProperties
df = pd.read_csv("SMSSpamCollection", delimiter=\'\t\', header=None)
df.head()

print("spam 数量: ", df[df[0] == \'spam\'][0].count())
print("ham 数量: ", df[df[0] == \'ham\'][0].count())
spam 数量:  747
ham 数量:  4825
X_train_raw, X_test_raw, y_train, y_test = train_test_split(df[1], df[0])
# 计算TF-IDF权重
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train_raw)
X_test = vectorizer.transform(X_test_raw)
# 建立模型
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
y_preds = classifier.predict(X_test)
for i, y_pred in enumerate(y_preds[-10:]):
    print("预测类型: %s -- 信息: %s" % (y_pred, X_test_raw.iloc[i]))
预测类型: ham -- 信息: Aight no rush, I\'ll ask jay
预测类型: ham -- 信息: Sos! Any amount i can get pls.
预测类型: ham -- 信息: You unbelievable faglord
预测类型: ham -- 信息: Carlos\'ll be here in a minute if you still need to buy
预测类型: spam -- 信息: Meet after lunch la...
预测类型: ham -- 信息: Hey tmr maybe can meet you at yck
预测类型: ham -- 信息: I\'m on da bus going home...
预测类型: ham -- 信息: O was not into fps then.
预测类型: ham -- 信息: Yes..he is really great..bhaji told kallis best cricketer after sachin in world:).very tough to get out.
预测类型: ham -- 信息: Did you show him and wot did he say or could u not c him 4 dust?

2.2 模型评估

混淆举证

test = y_test
test[test == "ham"] = 0
test[test == "spam"] = 1

pred = y_preds
pred[pred == "ham"] = 0
pred[pred == "spam"] = 1
from sklearn.metrics import confusion_matrix
test = test.astype(\'int\')
pred = pred.astype(\'int\')
confusion_matrix = confusion_matrix(test.values, pred)
print(confusion_matrix)
plt.matshow(confusion_matrix)
font = FontProperties(fname=r"/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc")
plt.title(\' 混淆矩阵\',fontproperties=font)
plt.colorbar()
plt.ylabel(\' 实际类型\',fontproperties=font)
plt.xlabel(\' 预测类型\',fontproperties=font)
plt.show()
[[1191    1]
 [  50  151]]

精度

from sklearn.metrics import accuracy_score

print(accuracy_score(test.values, pred))
0.9633883704235463

交叉验证精度

df = pd.read_csv("sms.csv")
df.head()

X_train_raw, X_test_raw, y_train, y_test = train_test_split(df[\'message\'], df[\'label\'])
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train_raw)
X_test = vectorizer.transform(X_test_raw)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
scores = cross_val_score(classifier, X_train, y_train, cv=5)
print(\' 精度:\',np.mean(scores), scores)
 精度: 0.9562200956937799 [0.94736842 0.95933014 0.95574163 0.95574163 0.96291866]

准确率召回率

precisions = cross_val_score(classifier, X_train, y_train, cv=5, scoring=\'precision\')
print(\'准确率:\', np.mean(precisions), precisions)
recalls = cross_val_score(classifier, X_train, y_train, cv=5, scoring=\'recall\')
print(\'召回率:\', np.mean(recalls), recalls)
准确率: 0.9920944081237428 [0.98550725 1.         1.         0.98701299 0.98795181]
召回率: 0.6778796653796653 [0.61261261 0.69642857 0.66964286 0.67857143 0.73214286]

F1 度量

f1s = cross_val_score(classifier, X_train, y_train, cv=5, scoring=\'f1\')
print(\' 综合评价指标:\', np.mean(f1s), f1s)
 综合评价指标: 0.8048011339652206 [0.75555556 0.82105263 0.80213904 0.8042328  0.84102564]

ROC AUC

from sklearn.metrics import roc_curve, auc
predictions = classifier.predict_proba(X_test)
false_positive_rate, recall, thresholds = roc_curve(y_test, predictions[:, 1])
roc_auc = auc(false_positive_rate, recall)
plt.title(\'Receiver Operating Characteristic\')
plt.plot(false_positive_rate, recall, \'b\', label=\'AUC = %0.2f\' % roc_auc)
plt.legend(loc=\'lower right\')
plt.plot([0, 1], [0, 1], \'r--\')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.ylabel(\'Recall\')
plt.xlabel(\'Fall-out\')
plt.show()