1.1 定义
Kafka是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域。
发布/订阅:消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的消息。
1.2 消息队列
目前企业中比较常见的消息队列产品主要有Kafka、ActiveMQ、RabbitMQ、RocketMQ等。
在大多数场景主要采用Kafka作为消息队列
在JavaEE开发中主要采用ActiveMQ、RabbitMQ、RocketMQ
1.2.1 传统消息队列的应用场景
1、传统的消费队列的主要应用场景有:缓存/削峰(缓冲)、解耦(少依赖)、异步通信(不必要及时处理)
1)缓存/削峰(缓冲):有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
2)解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵循同样的接口约束。
3)异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后再需要的时候再去处理它们。
1.2.2 消息队列的两种模式
消息队列主要分为两种模式:点对点模式(一个生产者对口一个消费者)和发布/订阅模式(一对多)
1.3 Kafka基础框架
1、Producer:消息生产者,就是向Kafka broker发消息的客户端
2、Consumer:消息消费者,向kafka broker获取消息的客户端
3、Consumer Group(CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个broker可以由多个不同的topic,一个topic下的一个分区只能被一个消费者组内的一个消费者所消费;消费者之间不受影响。消费者组是逻辑上的一个订阅者。
4、Broker:一个kafka服务器就是一个broker。一个broker可以容纳多个不同topic
5、Topic:可以理解为一个队列,生产者和消费者面向的都是一个topic
6、Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列
7、Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个发你去都有若干个副本,一个leader和若干个follower
8、leader:每个分区副本中的”主“,生产者发送数据的对象,以及消费者消费数据的对象都是leader
9、followeer:每个分区副本中的“从”,实现于leader副本保持同步,在leader发送故障时,称为新的leader