Problem:
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
题目的意思是,在(x,y)坐标中,每个点做与x轴垂直的直线后,求哪两根直线和x轴所能装的水最多,不能倾斜的意思就是不是指梯形的面积,而是短板效应的矩形面积。先暴力试了下,练了下手感。不出所料N方的超时。
class Solution {
public:
int maxArea(vector<int> &height)
{
int area = , temparea;
int *temp = new int[height.size()];
for (int i = ; i < height.size(); i++)
{
int maxN = ;
for (int j = ; j < height.size(); j++)
{
if (i != j)
{
temparea = (height[i]<height[j]?height[i]:height[j]) * abs(j - i);
if (temparea > maxN)
maxN = temparea;
}
}
temp[i] = maxN;
}
for (int i = ; i < height.size(); i++)
{
if (temp[i] > area)
area = temp[i];
}
delete[] temp;
return area;
}
};
后来还想,能不能排序之后再判断,发现sort又是不稳定的所以就放弃了。后来发现可以从两边往里收缩的办法解决。两边往里的还有第一题Two Sum也是这样做的。
为什么用两边往里呢,因为我们我们要的面积是两条直线的距离*两条直线短的那条的值,所以,我们先定一个,距离最大就是头和尾了,如果比这个距离小的,又还想比我现在大的话,那就只有高增加才有可能,这个时候就是把短的那条对应的位置往前看一位,看看可不可能有比短的长,且乘出来的面积是比之前大的,如果大,那就记录下来。为什么要用短的那边往里看呢,因为如果长的往里的话,就是下去一根再长也是根据短板效应看短的。根据这个思路自己整理了下代码如下:
class Solution {
public:
int maxArea(vector<int> &height)
{
int left = , right = height.size() - ;
int maxA = ;
while(left < right)
{
if (height[left] < height[right])
{
int tmp = (right - left) * height[left];
left++;
if (tmp > maxA)
maxA = tmp;
}
else
{
int tmp = (right - left) * height[right];
if (tmp > maxA)
maxA = tmp;
right--;
}
}
return maxA;
}
};
这样就Accept了
2015/03/29:
class Solution {
public:
int maxArea(vector<int> &height) {
int l = , r = height.size()-, water = ;
while(l < r){
water = max(water, (r - l) * (height[l] > height[r] ? height[r--] : height[l++]));
}
return water;
}
};
python:
class Solution:
# @return an integer
def maxArea(self, height):
water, l, r = 0, 0, len(height)-1
while l < r:
water = max(water, (r - l)*min(height[l], height[r]))
if height[l] < height[r]:
l += 1
else:
r -= 1
return water