文章目录
- Floyd算法
- 例题:灾后重建
Floyd算法
Floyd算法用于求图中任意两点之间的最短路径,该算法主要运用了动态规划的思想。
思考: 给你几个点与边,可以组成一张图,那么如何求得任意两点之间的最短路径呢?
我们貌似可以使用dfs或者bfs来做,那么这样做的话,我们的dfs用来求一个点到一个点之间的最短路径是可行的,但是如果是n个点?我们难道需要进行n次的dfs或者bfs吗,每次记录一个点到任意一点的最短路径,这显然是不可能的。
现在思考一个问题,假设我们的图中的每两个顶点之间的边是单向边
- 如果我们不能使用中转点:我们 1 -> 2 :那么我们就需要 找到 1->2直接的一条相连的路径,这条路径长度为e[1] [2]
- 如果我们只能使用一个中转点:我们从 1 -> 2:那么我们就需要找到 1->3 ->2(我们假设这是一个比前面 1->2路程短的路径),那么我们就可以得到: e[1] [3] + e[3] [2] 的最短路径长度
- 如果我们只能使用两个中转点:我们从 1 -> 2:那么我们就需要找到 1->3->4 ->2(我们假设这是一个比前面 1->3->2路程短的路径),那么我们就可以得到: 首先中转3:e[1] [3]+e[3] [4],然后中转4:e[1] [4] + e[4] [2] 的最短路径长度,最后的路径就是e[1] [4] + e[4] [2]
- 同理如果我们可以使用 k 个中转点。则我们便可以得到最后的最短路径就是 e[1] [k] + e[k] [2],其中 e[1] [k] 包含之前所有 k -1 个中转点的计算后的最短路径。
那么我们便可以得到一个结论:我们可以枚举 从 i 到 j 经过的前k个中转点,使得i到j的路径最短。
因此 Floyd算法的核心就是从i号顶点到j号顶点只经过前k号点的最短路程
注意:作为中转不是经过第 k 个点,而是经过了 前k 个,包含 1,2,3,4,5,6 k-1 k,即表示这 从 i到j我们可以经过总共 k 个中转点,来使得这条路径最短
算法如下:
例题:灾后重建
B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
给出 B 地区的村庄数 ,村庄编号从 到 ,和所有 条公路的长度,公路是双向的。并给出第 个村庄重建完成的时间 ,你可以认为是同时开始重建并在第 天重建完成,并且在当天即可通车。若 为 则说明地震未对此地区造成损坏,一开始就可以通车。之后有 个询问 ,对于每个询问你要回答在第 天,从村庄 到村庄 的最短路径长度为多少。如果无法找到从 村庄到 村庄的路径,经过若干个已重建完成的村庄,或者村庄 或村庄 在第 天仍未重建完成,则需要返回 -1
。
这道题目就是Floyd算法的模板题。
这道题目让我们求得两个村庄之间的最短路程,因此我们就可以把两个村庄看作两个点,并且中转k个点,来求得最短路径
但是如果我们采用每次询问都 进行一次floyd算法的话查找两个点的最短路径,显然是会超时的。
我们注意到有个时间的概念在里面,即每个村庄的 修复时间 是固定的,并且是会影响到我们的选择的,因为如果我们计算 1 到 3的村庄的最短路径,可能这两个村庄的修复时间在我们所给的时间内,但是如果我们选择中转,则其他的点的时间都大于我们所给的时间,所以我们不能从其他点中转过来,但是确实从其他点中转使得 1到 3 的路程会更短,因此这个时间我们便可以设置为 k 的值,即在 k时间内中转,不能超过 k时间,因此我们就可以每次询问使用一次floyd算法了,但是我们的k是固定的,我们只需要两重循环就好了。
dp[i] [j] :表示从 i 到 j 的最短距离
状态转移方程:
需要注意的几点:
- dp存储最小值,因此我们首先要初始化为 INF一个极大值
- dp[i] [i] ,即 第 i个点与第i个点之间的距离为0
- 注意 边是双向边,因此需要存储 i 到 j ,j 到 i 的距离都为边的距离
AC code