POJ 2506 Tiling (递推 + 大数加法模拟 )

时间:2023-03-10 08:48:38
POJ 2506 Tiling (递推 + 大数加法模拟 )
Tiling
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7965   Accepted: 3866

Description

In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.

POJ 2506 Tiling (递推 + 大数加法模拟 )

Input

Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.

Output

For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.

Sample Input

2
8
12
100
200

Sample Output

3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251

算法分析:递推公式:f[i]=f[i-1]+f[i-2]*2; 此公式也不是我自己推导出来的,我也没推导出来,我从ACM之家上的java代码看出的
公式。
代码:
#include <stdio.h>
#include <string.h>
int a[1001][501]={0};
int main()
{
int n;
int i, j, h, e;
a[0][500] = 1;
a[1][500] = 1;
a[2][500] = 3;
for(i=3; i<=250; i++)
{
h = 0;
for(j=500; j>=0; j--)
{
e=a[i-2][j]*2+a[i-1][j]+h;
a[i][j]=e%10;
h=e/10;
}
}
while(scanf("%d", &n)!=EOF)
{
if(n==0)
{
printf("1\n"); continue;
}
i = 0;
while(a[n][i]==0)
{
i++;
}
for(i; i<=500; i++)
{
printf("%d", a[n][i] );
}
printf("\n");
}
return 0;
}

这还有一份java代码,正确的!

import java.util.*;
import java.math.*;
public class Main{
static BigInteger[] ans; //
public static void main(String[] args){
Scanner reader=new Scanner(System.in);
ans = new BigInteger[251];
ans[0]=BigInteger.valueOf(1);
ans[1]=BigInteger.valueOf(1);
ans[2]=BigInteger.valueOf(3);
for(int i=3; i<=250; i++)
{
ans[i] = ans[i-1].add(ans[i-2].multiply(BigInteger.valueOf(2)));
}
int n;
while(reader.hasNextInt()){
n=reader.nextInt();
System.out.println(ans[n]);
}
}
}