对于抢票、秒杀这种业务,我说说自己对这种高并发的理解吧,这里提出个人认为比较可行的几个方案:
方案一:使用队列来实现
可以基于例如MemcacheQ等这样的消息队列,具体的实现方案这么表述吧
比如有100张票可供用户抢,那么就可以把这100张票放到缓存中,读写时不要加锁。 当并发量大的时候,可能有500人左右抢票成功,这样对于500后面的请求可以直接转到活动结束的静态页面。进去的500个人中有400个人是不可能获得商品的。所以可以根据进入队列的先后顺序只能前100个人购买成功。后面400个人就直接转到活动结束页面。当然进去500个人只是举个例子,至于多少可以自己调整。而活动结束页面一定要用静态页面,不要用数据库。这样就减轻了数据库的压力。
方案二:当有多台服务器时,可以采用分流的形式实现
假设有m张票, 有n台产品服务器接收请求,有x个请求路由服务器随机转发
直接给每台产品服务器分配 m/n张票
每台产品服务器内存做计数器,比如允许m/n*(+0.1)个人进来。
当内存计数器已满:
后面进的人, 直接跳到到转到活动结束的静态页面,
通知路由服务器,不在路由到这台服务器(这个值得商讨)。
所有产品服务器进来的m/n*(+0.1)个人再全部转发到一台付款服务器上,进入付款环节,看谁手快了,这时候人少,加锁什么的就简单的。
方案三、如果是单服务器,可以使用Memcache锁来实现
product_key 为票的key
product_lock_key 为票锁key
当product_key存在于memcached中时,所有用户都可以进入下单流程。
当进入支付流程时,首先往memcached存放add(product_lock_key, ""),
如果返回成功,进入支付流程。
如果不成,则说明已经有人进入支付流程,则线程等待N秒,递归执行add操作。
可以基于例如MemcacheQ等这样的消息队列,具体的实现方案这么表述吧
比如有100张票可供用户抢,那么就可以把这100张票放到缓存中,读写时不要加锁。 当并发量大的时候,可能有500人左右抢票成功,这样对于500后面的请求可以直接转到活动结束的静态页面。进去的500个人中有400个人是不可能获得商品的。所以可以根据进入队列的先后顺序只能前100个人购买成功。后面400个人就直接转到活动结束页面。当然进去500个人只是举个例子,至于多少可以自己调整。而活动结束页面一定要用静态页面,不要用数据库。这样就减轻了数据库的压力。 方案二:当有多台服务器时,可以采用分流的形式实现
假设有m张票, 有n台产品服务器接收请求,有x个请求路由服务器随机转发 直接给每台产品服务器分配 m/n张票
每台产品服务器内存做计数器,比如允许m/n*(+0.1)个人进来。
当内存计数器已满:
后面进的人, 直接跳到到转到活动结束的静态页面,
通知路由服务器,不在路由到这台服务器(这个值得商讨)。
所有产品服务器进来的m/n*(+0.1)个人再全部转发到一台付款服务器上,进入付款环节,看谁手快了,这时候人少,加锁什么的就简单的。 方案三、如果是单服务器,可以使用Memcache锁来实现 product_key 为票的key
product_lock_key 为票锁key 当product_key存在于memcached中时,所有用户都可以进入下单流程。
当进入支付流程时,首先往memcached存放add(product_lock_key, ""),
如果返回成功,进入支付流程。
如果不成,则说明已经有人进入支付流程,则线程等待N秒,递归执行add操作。