The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
1! + 4! + 5! = 1 + 24 + 120 = 145
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
169 363601 1454 169 871 45361 871 872 45362 872
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
69 363600 1454 169 363601 ( 1454) 78 45360 871 45361 ( 871) 540 145 ( 145)
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?
题目大意:
数字145有一个著名的性质:其所有位上数字的阶乘和等于它本身。
1! + 4! + 5! = 1 + 24 + 120 = 145
169不像145那么有名,但是169可以产生最长的能够连接回它自己的数字链。事实证明一共有三条这样的链:
169 363601 1454 169 871 45361 871 872 45362 872
不难证明每一个数字最终都将陷入一个循环。例如:
69 363600 1454 169 363601 ( 1454) 78 45360 871 45361 ( 871) 540 145 ( 145)
从69开始可以产生一条有5个不重复元素的链,但是以一百万以下的数开始,能够产生的最长的不重复链包含60个项。
一共有多少条以一百万以下的数开始的链包含60个不重复项?
//(Problem 74)Digit factorial chains
// Completed on Tue, 18 Feb 2014, 04:21
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<stdbool.h> #define N 1000000
long long fac[]; //保存1~ 9阶乘的数组 long long factorial(int n) //计算阶乘函数
{
if(n == || n == ) return ;
else return n * factorial(n - );
} void init() //初始化数组
{
int i;
for(i = ; i <= ; i++) {
fac[i] = factorial(i);
}
} long long sum(long long n) //计算整数n各位的阶乘的和
{
int ans = ;
while(n) {
ans += fac[n % ];
n /= ;
}
return ans;
} bool fun(int n)
{
int i, count, t;
bool flag = false;
count = ;
while() {
switch(n) {
case : count += ; flag = true; break;
case : count += ; flag = true; break;
case : count += ; flag = true; break;
case : count += ; flag = true; break;
case : count += ; flag = true; break;
case : count += ; flag = true; break;
case : count += ; flag = true; break;
default: t = sum(n);
if( n == t) {
flag = true;
break;
} else{
n = t;
count++; break;
}
}
if(flag) break;
}
if(count == ) return true;
else return false;
} void solve()
{
int i, count;
count = ;
for(i = ; i <= N; i++) {
if(fun(i)) count++;
}
printf("%d\n", count);
} int main()
{
init();
solve();
return ;
}
Answer:
|
402 |
(Problem 74)Digit factorial chains的更多相关文章
-
(Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
-
(Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
-
(Problem 16)Power digit sum
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...
-
(Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
-
(Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
-
(Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
-
(Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
-
(Problem 46)Goldbach&#39;s other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
-
(Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
随机推荐
-
H5 Notes:Navigator Geolocation
H5的地理位置API可以帮助我们来获取用户的地理位置,经纬度.海拔等,因此我们可以利用该API做天气应用.地图服务等. Geolocation对象是我们获取地理位置用到的对象. 首先判断浏览器是否支持 ...
-
Shiro安全框架入门篇(登录验证实例详解与源码)
转载自http://blog.csdn.net/u013142781 一.Shiro框架简单介绍 Apache Shiro是Java的一个安全框架,旨在简化身份验证和授权.Shiro在JavaSE和J ...
-
【ufldl tutorial】Convolution and Pooling
卷积的实现: 对于每幅图像,每个filter,首先从W中取出对应的filter: filter = squeeze(W(:,:,filterNum)); 接下来startercode里面将filter ...
-
Noip2015总结
Noip2015战役总结 [游记部分] Day0 考前说是可以放松一下,下午呢就在机房打了几盘杀,一起玩了玩狼人.不过晚上觉得还是要有点氛围了,于是稍稍打了几个模板,觉得正确率还不错,给自己一点自信的 ...
-
Hbase实例
import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.had ...
-
WPF 自定义路由事件 与 附加路由事件
为student添加附件事件
-
code:blocks 编译环境设置
1. 支持C99 在菜单settings->compiler settings->comiler settings->Other options 添加: -std=c99 2. 支 ...
-
javascript函数的基础功能
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
-
POJ1458 Common Subsequence 【最长公共子序列】
Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37614 Accepted: 15 ...
-
Flask入门之完整项目搭建
一.创建虚拟环境 1,新建虚拟环境 cmd中输入:mkvirtualenv 环境名 2,在虚拟环境安装项目运行所需要的基本模块 pip install flask==0.12.4 pip instal ...