(Problem 46)Goldbach's other conjecture

时间:2022-04-04 20:30:09

It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

9 = 7 + 2(Problem 46)Goldbach's other conjecture12
15 = 7 + 2(Problem 46)Goldbach's other conjecture22
21 = 3 + 2(Problem 46)Goldbach's other conjecture32
25 = 7 + 2(Problem 46)Goldbach's other conjecture32
27 = 19 + 2(Problem 46)Goldbach's other conjecture22
33 = 31 + 2(Problem 46)Goldbach's other conjecture12

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

题目大意:

Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:

9 = 7 + 2(Problem 46)Goldbach's other conjecture12
15 = 7 + 2(Problem 46)Goldbach's other conjecture22
21 = 3 + 2(Problem 46)Goldbach's other conjecture32
25 = 7 + 2(Problem 46)Goldbach's other conjecture32
27 = 19 + 2(Problem 46)Goldbach's other conjecture22
33 = 31 + 2(Problem 46)Goldbach's other conjecture12

但是这个推测是错误的。

最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?

//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
Answer:
5777

(Problem 46)Goldbach's other conjecture的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  7. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  8. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  9. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

随机推荐

  1. 显示pdf

    document.all[document.all.PDFNotKnown ? "IfNoAcrobat" : "IfAcrobat"].style.displ ...

  2. objectARX 获取指定图层上所有实体ID

    2015-12-17 //获取指定图层上所有实体ID AcDbObjectIdArray GetAllEntityId(const TCHAR* layername) { AcDbObjectIdAr ...

  3. winform DataGridView控件判断滚动条是否滚动到当前已加载的数据行底部 z

    http://www.zuowenjun.cn/post/2015/05/20/162.html 判断 DataGridView控件滚动条是否滚动到当前已加载的数据行底部,其实方法很简单,就是为Dat ...

  4. HDFS的体系结构和操作

    1.对hdfs操作的命令格式是hadoop fs 1.1 -ls <path> 表示对hdfs下一级目录的查看 1.2 -lsr <path> 表示对hdfs目录的递归查看 1 ...

  5. SCCM2007

    Active Directory系统组发现:此方法按照上次运行发现方法时 Active Directory 中的响应返回对象,可发现活动目录OU.全局组.通用组.嵌套组.非安全组. Active Di ...

  6. Android性能优化之如何避免Overdraw

    什么是Overdraw? Overdraw就是过度绘制,是指在一帧的时间内(16.67ms)像素被绘制了多次,理论上一个像素每次只绘制一次是最优的,但是由于重叠的布局导致一些像素会被多次绘制,而每次绘 ...

  7. 微信超时5s,调用客服接口异步回复消息(PHP)

    当用户触发事件,如果不能保证在5s内响应,可以先返回success,然后异步调用返回的信息.代码如下: // 立即返回(异步执行) ignore_user_abort(true);//start=== ...

  8. Redis缓存穿透、缓存雪崩和缓存击穿理解

    1.缓存穿透(不存在的商品访问数据造成压力) 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并 ...

  9. POJ2392 Space Elevator

    题目:http://poj.org/problem?id=2392 一定要先按高度限制由小到大排序! 不然就相当于指定了一个累加的顺序,在顺序中是不能做到“只放后面的不放前面的”这一点的! 数组是四十 ...

  10. select&lpar;&rpar;函数用法三之poll函数

    poll是Linux中的字符设备驱动中有一个函数,Linux 2.5.44版本后被epoll取代,作用是把当前的文件指针挂到等待队列,和select实现功能差不多. poll()函数:这个函数是某些U ...