转自:http://fsa.ia.ac.cn/opencv-doc-cn/opencv-doc-cn-0.9.7/ref/opencvref_cv.cn.htm
ApproxChains
用多边形曲线逼近 Freeman 链
CvSeq* cvApproxChains( CvSeq* src_seq, CvMemStorage* storage,
int method=CV_CHAIN_APPROX_SIMPLE,
double parameter=0, int minimal_perimeter=0, int recursive=0 );
- src_seq
- 涉及其它链的链指针
- storage
- 存储多边形线段位置的缓存
- method
- 逼近方法 (见函数 cvFindContours 的描述).
- parameter
- 方法参数(现在不用).
- minimal_perimeter
-
仅逼近周长大于
minimal_perimeter
轮廓。其它的链从结果中除去。 - recursive
-
如果非 0, 函数从
src_seq
中利用h_next
和v_next links
连接逼近所有可访问的链。如果为 0, 则仅逼近单链。
这是一个单独的逼近程序。 对同样的逼近标识,函数 cvApproxChains 与 cvFindContours 的工作方式一模一样。它返回发现的第一个轮廓的指针。其它的逼近模块,可以用返回结构中的 v_next
和 v_next
域来访问
StartReadChainPoints
初始化链读取
void cvStartReadChainPoints( CvChain* chain, CvChainPtReader* reader );
-
chain
链的指针
reader
链的读取状态
函数 cvStartReadChainPoints初始化一个特殊的读取器 (参考 Dynamic Data Structures 以获得关于集合与序列的更多内容).
ReadChainPoint
得到下一个链的点
CvPoint cvReadChainPoint( CvChainPtReader* reader );
- reader
- 链的读取状态
函数 cvReadChainPoint 返回当前链的点,并且更新读取位置。
ApproxPoly
用指定精度逼近多边形曲线
CvSeq* cvApproxPoly( const void* src_seq, int header_size, CvMemStorage* storage,
int method, double parameter, int parameter2=0 );
- src_seq
- 点集数组序列
- header_size
- 逼近曲线的头尺寸
- storage
- 逼近轮廓的容器。如果为 NULL, 则使用输入的序列
- method
-
逼近方法。目前仅支持
CV_POLY_APPROX_DP
, 对应 Douglas-Peucker 算法. - parameter
-
方法相关参数。对
CV_POLY_APPROX_DP
它是指定的逼近精度 - parameter2
-
如果
src_seq
是序列,它表示要么逼近单个序列,要么在src_seq
的同一个或低级层次上逼近所有序列 (参考 cvFindContours 中对轮廓继承结构的描述). 如果src_seq
是点集的数组 (CvMat*) , 参数指定曲线是闭合 (parameter2
!=0) 还是非闭合 (parameter2
=0).
函数 cvApproxPoly 逼近一个或多个曲线,并返回逼近结果。对多个曲线的逼近,生成的树将与输入的具有同样的结构。(1:1 的对应关系).
BoundingRect
计算点集的最外面(up-right)矩形边界
CvRect cvBoundingRect( CvArr* points, int update=0 );
- points
-
二维点集,点的序列或向量 (
CvMat
) - update
-
更新标识。下面是轮廓类型和标识的一些可能组合:
- update=0, contour ~ CvContour*: 不计算矩形边界,但直接由轮廓头的
rect
域得到。 - update=1, contour ~ CvContour*: 计算矩形边界,而且将结果写入到轮廓头的
rect
域中 header. - update=0, contour ~ CvSeq* or CvMat*: 计算并返回边界矩形
- update=1, contour ~ CvSeq* or CvMat*: 产生运行错误 (runtime error is raised)
- update=0, contour ~ CvContour*: 不计算矩形边界,但直接由轮廓头的
函数 cvBoundingRect 返回二维点集的最外面 (up-right)矩形边界。
ContourArea
计算整个轮廓或部分轮廓的面积
double cvContourArea( const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ );
- contour
- 轮廓 (定点的序列或数组).
- slice
- 感兴趣轮廓部分的起始点,缺省是计算整个轮廓的面积。
函数 cvContourArea 计算整个轮廓或部分轮廓的面积。 对后面的情况,面积表示轮廓部分和起始点连线构成的封闭部分的面积。如下图所示:
NOTE: 轮廓的方向影响面积的符号。因此函数也许会返回负的结果。应用函数 fabs()
得到面积的绝对值。
ArcLength
计算轮廓周长或曲线长度
double cvArcLength( const void* curve, CvSlice slice=CV_WHOLE_SEQ, int is_closed=-1 );
- curve
- 曲线点集序列或数组
- slice
- 曲线的起始点,缺省是计算整个曲线的长度
- is_closed
-
表示曲线是否闭合,有三种情况:
- is_closed=0 - 假设曲线不闭合
- is_closed>0 - 假设曲线闭合
- is_closed<0 - 若曲线是序列,检查 ((CvSeq*)curve)->flags 中的标识 CV_SEQ_FLAG_CLOSED 来确定曲线是否闭合。否则 (曲线由点集的数组 (CvMat*) 表示) 假设曲线不闭合。
函数 cvArcLength 通过依次计算序列点之间的线段长度,并求和来得到曲线的长度。
CreateContourTree
创建轮廓的继承表示形式
CvContourTree* cvCreateContourTree( const CvSeq* contour, CvMemStorage* storage, double threshold );
- contour
- 输入的轮廓
- storage
- 输出树的容器
- threshold
- 逼近精度
函数 cvCreateContourTree 为输入轮廓 contour
创建一个二叉树,并返回树根的指针。如果参数 threshold
小于或等于 0 ,则函数创建一个完整的二叉树。如果 threshold
大于 0 , 函数用 threshold
指定的精度创建二叉树:如果基线的截断区域顶点小于threshold,该数就停止生长并作为函数的最终结果返回。
ContourFromContourTree
由树恢复轮廓
CvSeq* cvContourFromContourTree( const CvContourTree* tree, CvMemStorage* storage,
CvTermCriteria criteria );
- tree
- 轮廓树
- storage
- 重构的轮廓容器
- criteria
- 停止重构的准则
函数 cvContourFromContourTree 从二叉树恢复轮廓。参数 criteria
决定了重构的精度和使用树的数目及层次。所以它可建立逼近的轮廓。 函数返回重构的轮廓。
MatchContourTrees
用树的形式比较两个轮廓
double cvMatchContourTrees( const CvContourTree* tree1, const CvContourTree* tree2,
int method, double threshold );
- tree1
- 第一个轮廓树
- tree2
- 第二个轮廓树
- method
-
相似度。仅支持
CV_CONTOUR_TREES_MATCH_I1
。 - threshold
- 相似度阈值
函数 cvMatchContourTrees 计算两个轮廓树的匹配值。从树根开始通过逐层比较来计算相似度。如果某层的相似度小于 threshold
, 则中断比较过程,且返回当前的差值。