MYSQL数据库学习十 单表数据记录查询

时间:2021-10-29 10:38:17

10.1 简单数据记录查询

SELECT field1,field2,...fieldn
FROM table_name;

  “*” ——查询所有记录

SELECT * FROM table_name;

  DISTINCT——避免重复数据查询

SELECT DISTINCT field1,field2,...fieldn
FROM table_name;

  AS——修改字段名

SELECT field1 【AS】 otherfield1,field2 【AS】 otherfield2
FROM table_name;

  CONCAT——设置显示格式

SELECT CONCAT(ename,'的年龄为',eage)
FROM table_name;

  

10.2 条件数据记录查询

  MySQL中,通过关系运算符和条件运算符来编写“条件表达式”。

SELECT field1,field2,...fieldn
FROM table_name
WHERE CONDITION;

  注意:通过"&&"符号连接查询条件。

  BETWEEN AND——判断字段的数值是否在指定范围内

SELECT field1,field2,...fieldn
FROM table_name
WHERE field 【NOT】 BETWEEN VALUE1 AND VALUE2;

  IS NULL——判断字段的数值是否为空

SELECT field1,field2,...fieldn
FROM table_name
WHERE field IS 【NOT】 NULL;

  IN——判断字段的数值是否在指定集合中

SELECT field1,field2,...fieldn
FROM table_name
WHERE field 【NOT】IN (value1,value2,value3,...valuen);

  LIKE “%”——模糊查询,“_”——通配符查询,LIKE '%%'表示查询所有数据。

SELECT field1,field2,...fieldn
FROM table_name
WHERE field LIKE value;

  NOT LIKE 也可以通过逻辑非运算符(NOT)来实现:

SELECT field1,field2,...fieldn
FROM table_name
WHERE field NOT LIKE value; SELECT field1,field2,...fieldn
FROM table_name
WHERE NOT field LIKE value;

  

10.3 排序数据记录查询

1. 升序排序-ASC

SELECT *
  FROM table_name
    ORDER BY field ASC;

ORDER BY默认升序排序。

降序排序-DESC

SELECT *
  FROM table_name
    ORDER BY field DESC;

2. 多字段排序

SELECT *
FROM table_name
ORDER BY field1 【ASC】, field2 DESC;

10.4 限制数据记录查询数量

SELECT field1,field2,...fieldn
FROM table_name
WHERE CONDITION
LIMIT OFFSET_START,ROW_COUNT;

OFFSET_START为起始偏移量,不指定时默认为0;ROW_COUNT表示显示的行数。

10.5 统计函数和分组数据记录查询

1. 统计函数

COUNT():统计表中记录总数
AVG():计算字段值的平均值
SUM():计算字段值的总和
MAX():查询字段值的最大值
MIN():查询字段值的最小值

注意:如果所操作的表中没有任何数据记录,COUNT()函数返回0,其他函数返回NULL。

2. 分组查询

  GROUP BY- 按照field字段值分组,显示每组中的一条记录。

SELECT field1,field2,...fieldn
FROM table_name
WHERE CONDITION
GROUP BY field;

实现多个字段分组查询:

SELECT function()
FROM table_name
WHERE CONDITION
GROUP BY field1,field2;

  GROUP_CONCAT-显示每个分组中的指定字段值:

SELECT GROUP_CONCAT(field1)
FROM table_name
WHERE CONDITION
GROUP BY field;

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoMAAACgCAIAAAD4q/FoAAAY2ElEQVR4nO2d+Y8dx3HH+7+JHSOBRdlxLsqyLfEQz+Uh3ocsUxQp2QlgBDn+o9wJZCcy4kRjxRa5FMWbFMVrKZKyeIkWEcAo5ADyw/M+zU53VVf3HN3T8/38IMyrqa76VvV0t3a57z1z9dNfv3zkhwYAAAAAg0NE5tKdp9sO/0lqJQAAAMAUISJz5vrDjXteHyBZVcO2t4xTufAmtf25FIKzUq2+wOGRJ0XuniZahBhZ0kQIfQ65J5m7Dn2e4/JyLzVTrNGp198rmcjog66eN9sN8zuDiMyJS3de2Ha4pwQ2znr0RWpmd/5SDq7xrz8x9ksl7aew1wfRuQyUfbZL6+p5bfmcFADXZ++1xlm+FacnIpd9bQ804rrL6pHISkxXdPK8cc8D5ncGEZl3Tl9bvX53H9GdcMUoi1Su9uiMcsy4mWg5f70+i6GrqI/+eIVp7IUhNNZ5zfkr587bVU18296JTkFehg9DhpLaEDfv9ljueXC+9NoT0pMkIjJv/+Li7317a2XhzO1srnPZOCdMrkRTpHJ46DRzj0iEwoYz10+uyY1blYUcnIuvqSj0Wgil0SPrjEikySvUIvhX/O4j1OVMFyTee0vWpqnXm052kPPaMjRxuJYGSXIKc/Zf48/dsrMLwjLR6dWvqcWZy/Dz2EjKDdenHr5vXmFcUq7S+jURmbf+4/RX/3h9vUfCgLqb7MAplssIKpKzC8V7/dvLsz2V/YluY9DAlnGEmEE6gwbqb3n928xLtUy38b2anbcaYmTNgg9XlFKPt1eNFJo4to9zlNeoufaObcgOjcORSqcmvqaWhl2Zt4GcxWscsm9eYS11EpH5h5+c+Mo3XuSUhRYc5BBRoeDcSM15crVoNOgVyk2roxwSFF+vltOjv/amk+12H7ziNXVx8b212HrqFmFIdHxvjVwKLleojwbO2Zu3UbIch+uPc5RgtON4+8D5C+Uoe+IkoU6NPK8zF9Nbi16SYEzSN29POB/NNRGZv/2Xn3/5a9/ilMlFcmULituUJ8fXRA6Vp0zRMmlLnRG5ouNE90fw1EyEJgXn1rJXnfRfKZtL6g3L+QsagiRp4st5o3UKUuM8g64b8rxNU3Z1pDq5+E67fO0c7hU5xr5pronI/PWP3v3Squc5ZfUx0dV6K1GWJ8e3XwbJU/q01KkM7rxu3/9qGW/SurMziJyiTR9CjU5C6/L6x8VX1hvUZ++1Mq++mS3zthwrSw1NFHrdkBetU5A9pE6NfqEoLnVoLvkllz0iV1d98+oUZGuuZyfxz37rmW9qWuP04eTatyqL0PKEvHbwemf1dmWKIJ3GNQF2HE5MI1TdYl/LOoPiOC1eqXo9mv7I8mS4+Fwop05lM9v0wbjmxR5ST8T1xBkntC4BbhQXX37JFRIqVeOvbJp9wQ3nmuBUKMhOpdOp1mvnQgXVpdQpj/UGdIq0L/R6BIWyZo2e5ZN41TeDQkeoAV76bhemYwCEFagZkpyKIbUu0DuY6IQQkfmbH7/7pWef5zyiVyOWcRBoVzFgKgEAQcz+Yus/v/y1b6VWAgAAAEwRIjJ/968//+2vfzu1EgAAAGCKEJH5+7d/8ZVvfCe1EgAAAGCKEJH5x5+89zu//0JqJQAAAMAUISLzT/924nf/cE1qJQAAAMAUISLzzz89+dU/Wst59P1XoNxbJuT3UdhG+WVWZPi3tbakNv3Xx5GVyDFDS1P6AwDAwBCReevfF59ZvU5w6nsj02y4zmvnjm9CNt+EG3Q+x0OH/bev5Vt6PaFBuIBxZDJTAIAimX0X06lVq9cLTn2fGfbGbdudO7JtbxCUd2DSZudkeA9Xuf9BMTWSNPG9tGx1hzOlfDIBAJOCiMyP3jn17HPrhWNMY7eNRr2FNTZZzu6M2bBzUrmkSmd7iDeOLUyoWojP9cHrH1SU91ajHNuHEynfissbVJrdCsForPmqLOTgXPzGLa94AMB0aJ7EZvks5DY+zc7IbWoc3KYm7IBcLqd+Oa/s43TmGqJx47JrajSK/stJ5bqct0L7z/k04ngl2f4RQfTXerfo+AAA4GR2Ei+uem5dfUs16pNY3jFN+GHg3Bk1u6ewq2ryeuHqDe0bl11To1H0n7PLdTXGOnPJ2pT6NXQSigsi9EceEhQ/VC0AYMoQkXnrncVVq9fWt1QT+DNxgzY7L2fn8nrtEXnjRCr7xgUUnIP637L5Xv2a/kfMBScpOpR+IuKGaJztgdUymhIAABNh9hdbJ59Zvaa+pZrAHbnDnZez96HBGUcjkhOjceMUapw1weU4caUJJWvyKmV49QSFiuhPJ/XK/a+W0ZQAAJgIs5P4RP0knmHvPvYmUtWQjQKcf8PIZbEFO196s0dLFV5WK3HG4fwFAbIeTRy5tMo13Vxqb95QMVxz2oQy/LwIqblQdYt97dWp1w8AmAiz306fWLX6xdRKcsE+CaK3zm73XOzgfTNAhzGJAAAbIjI/rk48i5O4a1qe4p3HATLoMwAgFURk3n538evPr0mtBAAAAJgiRGR++t7pP/iO9BlbAAAAAOgJIjI/e//sc+s2pVYCAAAATBEiMu+du/zC5m2plQAAAABThIjM6cvX1m/flVoJAAAAMEWIyJy9trRp1/7USgAAAIApQkTmws17W/e9kloJAAAAMEWIyFxaur9w4MjcVOpbKkuti2Nq9QIwRkpdp6XW1RNEZC7dfrhw8OjcVGoHS62LY2r1AjBGSl2npdbVE0RkLt5+tHDwmGE+8tc2jsteal2cfWr1wg77GO2lrlOuLiBDRObC0qMtB47NTaX2rtS6OKZWLwBjpNR1WmpdPUFE5tytR5v34yQujanVC8AYKXWdllpXTxCROXvjwaa9r6dWAgAAAEwRIjIfXPt0457XUisBAAAApggRmdNXP3lp1/dSKwEAAACmCBGZUx/eXf/yq6mVAAAAAFOEiMzi5Tvrd+IztgAAAIAEzE7ij9ftwEkMAAAAJGB2Et9et+NwaiUAAADAFCEis3jp9lqcxAAAAEAKlk/i7YdTKwEAAACmiOO306GfjTKWDxcdhcgOmVq9AIyRgdfpYNs19p8gHH+xFdHB9k3Hk9E5U6sXgDEy/DrFSZwhRGROXVnxLqbhT2I8GX0wtXoBGCM4iYGZncTvf3iv/ske+g5WK3Ha7bCNW5WFHJyLr1QbWpdzuL7eesle/dyQhPXq+19ZyP7RdQFQEsrnX15c3HXQ0paNeqlBdYEZ8Z92KT8B9rXeLTp+54Rq4Oq1n+9O4ndCm7xOn2rlos1hHgEYO9F7hXIZCuux4YOl2ge/+QaIDbu/+AYIZa/lqa2jHBIUP0hqqLNTf3S9lfgzbpv4ndTLxeeuvfob9Qr6g8oBoEiC1mnEdcXsP7abvE7tOJ3UBWYQkTlz/cHGvUfnpg6fjDZDQp+8IMFKt5YaOqkr+oGOqLcTnfP/Ni5a6gSgSPrel+xlyLlxMuJWKNZ1EERkzt58tGnfsbmppydD4xb9tGloWdf8pbIoLqMyfvJ6o6+rlVMZGgeASdH3OlUuQ2E9xi1PLOogiMicu/V48/7jc5O+g9UyxjWRdpxqJVwoW4bzVuhMt6+LC+LUI4gU4juzDFZvaP8Ns5Kdw209cXUBUBLK57+r9di4cMbxGjusC8wgInN+6bMtB94YIBnmRkBYaQAAAApmdhI/GeAkxg9AXtAiAACYIERkLgxyEgMAAADAZnYSD/TbaQAAAAA0mP12+vGW2l9sAQAAAGAwiMicv/Voc+1dTAAAAAAYDCIy524+3LzvqN8XAAAAAF1DRObcjfub9r6WWgkAAAAwRYjInL3+y017gr8BAgAAAADtISJz5tq9jbu/OzeV+n7WUuvimFq9AIyRUtdpqXX1BBGZD67e2fDy4bmp1A6WWhfH1OoFYIyUuk5LrasniMi8f+X2SzsPGutzoauVH086UnupdXH2qdULO+xjtJe6Trm6gAwRmcXLt9ZtPzA3ldq7UuvimFq9AIyRUtdpqXX1BBGZkxdvrN22b24qtYOl1sUxtXoBGCOlrtNS6+oJIjInLlxfs7A3tRIAAABgihCROXH+Gk5iAAAAIAmzn4lxEgMAAABpICJz8sL1+r8TAwAAAGAwiMgsXlrxt9MAAAAAGIz5+4kPpVYCAAAATBEiMh98dHfjrldSKwEAAACmCL4BAgAAAEgJEZnzNx9swfcTAwAAACkgInNh6fHWA8fmptw+G8UWE/ehpsPXxYnU2Ou3eq3XmUvQ2bKouYPT6NXZ0ObVKb9UtsjpL0fQ9MFbF5gC+c946GKpj+pLU3EQkbn08ZOFg2/MTVl1kNvRBAd9qF7htlfNdf1l3/XW15i93pxBuMhKu6Z8QSoXU/+cdJVXrleW1EYPKInMZzz64cy8rtwgInP5zufbDn1/bsqkg/rtTKl24LpCt12urr7rrVzIQbjIbewatc6ecMMbtXBjvXkFf29zlGOFukDxjGjSg6SOqK4cmJ3ET7cd/sHclFUHhT23qhEXajC8W7Dh6+q73sqFHISLrLFzwTVq7Z4IqeU2yonkyPItoSjuVrQ2UAAjmvQgqSOqKweWT+JDP/D7pkDYc8eyecmHhHM7Nq7duad65fjew0Zvb9Qr2GWpSkmVC0GknFR/q25U1hvUBACGB89n3xCRuXTn84X8fjs9Q95hnQ76UAOg38e5uvqu1ylDDmL76O3O4KFSuadCcHaOrdu9Sb237HRcM5V2MAVGNOlBUkdUVw4Qkbl4+1dbD745N2XVQW6HrZjdPyhU38gZnduxXVff9XKnghCE06O51sTxSuWeCjm4c6w3r+AvzFf7sWAijGjSg6SOqK4cmL2L6cmW/fjb6Y4RdmSNJfrkCPWU4zuDeE8U4drwPyvbeYUWeXUKDl3ldV4rRSr1gOLJfMajH87M68oNIjLnbj3evC+79xNXFtytoIA9KJXSyfrlIV67RkCom73wZDHzu9F2QYZgUeqUX3qzOP01fRBENm4JdYEpkP+MO1eKclRfmoqDiMzZG4827cVnbIFcSLWGsXcAAJJARObM9Qcbd7+WWgkAAAAwRYjIfHDt/oZdR1IrAQAAAKbI7FsRP92wC9/FBAAAACRgfhLjZ2IAAAAgAbN/J76PfycGAAAAkjD72+mHm/a+nloJAAAAMEWIyJxferxl//G5KZ/3cnDvY7PfxKmP1rVGf0Yur1yU/X7Tnurl8jbuCv5Oe7RIOQ7n73wZqsebV1DL6ef6E9oiLkvDYr+083bbH+GlrNwpxhmzbDIvlpsv5cAelZXF7NMunyzk92mXylUauo90KVGdzk7ttcxfRsuO64zzWui5xl/OK7TCmZczOq9tkbIYp39QvQ2L166B0xOh2VZiO3g12Nd2/7nIQn+C9BRD5sVGy8u8rtzI/fuJNddKtQPX5dVs71DOLWyAlWCnFvREXHuTanJp+llvbJAYfSHcvMgvvfY4bbYeTQlKB6U/1385sm0P1VMMmRcbLS/zunKDiMzlu0+35/r9xDOcq9S58pVBBkbed+QhA6yERnudw7mNUnOtSerNJSdqoBEg6Imwyy+9dr02LpFQfuM6Tolckd1/zShljWWTebHR8jKvKzeIyFy5+3T7K5l+P7ERtx77boY4Fcqy7V3J3uM6V9hIIWypmm3XqzYol+AvPA+hTXP6cxEEzfpRQcLkRJWLRl3OsV31x+6//VKwc+JBWjApw7D82+nD2f12eoa8Yp0O+lADoN+JWt5q41z3rHw7vrF2f9lHTupc5EIu218Yq1TiFOYdLrspRyllaOp1Nso5PFqSLEDzUrALNZbNiIoNkjqiunKAiMylj58sHMzxWxGdSoRdJiJarwgZ9TuU/m60s9Bn58vQa29STS5lIq9/qB5NfO9Lr71bPdUyQtK++yNHtu2heophRMUGSR1RXTkw+37iR1v2ffF+4kw6GLfylQEHQN5ZBtih2ndmbhd67rzmqtAE4eKEPg+a/ofqCa3XWMj2rvrjvSU7BOkR3Lz1chZuVJFkXmz0vGReV24QkTl7/f7GPV982mUmHawsuFtBAXtQKqWzdQp1cSIjiuVCyTqFu5xlfi1PCheHuw71F9yUepT+3JAg5w71OAs3/Lx03h/hZVAf7IFmGuRfrPCceEf1pak4iMic+eiTDbu+m1oJKJbc1iT0yOSmB4DiISJz+urd9TsPp1YCAAAATBEiMu9fubNu+8HUSgAAAIApQkTm1OWP1+IkBgAAAFKAkxgAAABIyfJvp3ccSq0EAAAAmCKzv9i699LOV1IrAQAAAKbI7P3En27c/b25KZ/3MGjej6iXmqouZ9Kgunqtt7Kw7ZrgzuHO+LIqZ+2avIJ+Z5DQRE6dXF7uWvY3ir4JdQk69WXKOpVJuYDevPZLrg9cZI0Yrzylve7gLVAvKUOi570vQcVBROb8rYdb9h2dmzLpoL3k7Gv7pTLgYDiTaoxDrnBlqxv+9l39lHnF1GtvxFHmbXRPGMKJ9Op0xpcLd+r0+tQzyj5OnXJ8ZT8FzV6cGjhj49o5XBDplSHXG2F39kTfotBmDk+cwvzrygoiMhdvf7Zw8PjclGEH5a0hzye+zbKvDxygXrm9Suf6S86uF9NAmVefmpsXuXZ9HL1OIa9GvFcnpyGinxH9CQ3YQMgVKkZZLzfEa9do9grLkGh5mdeVG7PvYvrVtkNvzk0ZdtD5iNsrVh9kMOyk3uXdqGuAerkdRNhxnA62ZucQjZgGyrzyLa4KO68wUBlHr1NZprJer8I2/QzKy2mQrxs43SIEyOK5UBq7U3+QvNBCBiZaXuZ15Ubu30/cWJNm5VZisp9vW55zrzF8XQPU65XEVeT015csiDF8H+S8ztRCFi6Iss9yRo1OIS8nJkjk3Kdq3U9hiFKD5pqTJ/ShjQahFtneyF650AjLnPIqyhMiMlfuPd1RO4kz7Dj3xJsQtUnqspNyOwJX1wD1ypLqbsa149hxOPs8iF62sw/KvE4LZ+caHqTW+Bpo6xTycn0T6hUUNoZE9FMoTcjrvJaLlYcLibx65HobKTR22+hM4RWm8UxC0KRzA4GX5Z+JD39/bsqwg86VbN/SBxkMO6mwxThvDVCvLMmpx5nC6ROkRBlTiK9MrZkXjWZNHPmWkFcjXqPT20NlP4PyhgZRatA76P1bSuUcvJL04hMS2mfnQOAl338njlix+oCDYScNrWuAeoN2H+VcyG6NIUKBbfLaLwW7RoYdSo6j0RlUizIFJ4kbqNTAaXbm1eSK0DDvg+AQpKcTqXJMGb1nEuQ+KwcCL0RkLi493rr/2NyUTwerGpw92yejsnDeEoZ47RoB0Tpte6XYze1bXBznKFt2dF6j67M3L6czLr6tU663gVyvrNPZHKFpsh6zEiEvV6BwrekDF5/T4623ES3O7kwno/dMhdBn76i+NBUHEZlzNx5s2nMktRIwOcayVqEzz7wcuekBwAsRmTMfffLSy/i0SwAAACABRGROf4jvJwYAAADSMPtWxNtrFvanVgIAAABMESIyixdvvbhlb2olAAAAwBQhInPy4q0XcBIDAAAAKSAis3hp6cWt+1IrAQAAAKbI8r8Tb8O/EwMAAAAJICJz+urd9TsOpVYCAAAATBEiMmeu/XLDrlfnplLfF19qXRxTqxeAMVLqOi21rp4gInP+5sPNe1+bm0rtYKl1cUytXgDGSKnrtNS6eoKIzMXbn209cNwwH0FsG8dlL7Uuzj61emGHfYz2UtcpVxeQISJz+e7nmX8rYieUWhfH1OoFYIyUuk5LrasniMhc/eS/dr76p3NTqR0stS6OqdULwBgpdZ2WWldPEJG5dv/Xu478MLUSAAAAYIoQkbn+kPYc/bPUSgAAAIApQkTm5qP/3nvsz1MrAQAAAKYIEZlbj/9n37G/SK0EAAAAmCJEZJY++9/9x/8ytRIAAABgihCRWXryf/vf+KvUSgAAAIAp8puT+ABOYgAAACAFyyfxmziJAQAAgATgJAYAAABSsuIkHtcnhY5Fp7Gkhn4oK+ef6sNdR9R5AADIny9O4vr2OoqtNonIiIzO45N7qR8eGqdbRvGEAADAKHD/dhr7rJOItthD7P/j0Z/Edf/QOJ2DhwQAADoh/iTmTgXD/JZbeOn016TmkraJo4yvSeF0azTNG4rzD40TWq8msrIPAAAABJonsf6YMa7DwLiOWPvaHuv0UWb35vIOD9Ucp7BhtMuXg1SuAzgiTstrb4EAAACCaPXb6WoZozhZhZMjbkNvjIoI6HSrLGT/NvE1MTn/0DgaPaE9jJs4AAAAdTo4iQWj85o7OVqec6GniCaO7BkR3NROPmVMzj/i4HR6cgOVwjQZAQAACLT622mnmxCncYp4/YOyh8bRaNDob6OTe6nxl91kGW2ulekAAAAoiX8/seDM3ZJPEf3mXlmY8JPYq1MuTaOzMYrT743P+QtxBBn6emW7Nx0AAAAN+IwtAAAAICU4iQEAAICU4CQGAAAAUoKTGAAAAEgJTmIAAAAgJUT0/49bKg7kSbohAAAAAElFTkSuQmCC" alt="" />

  HAVING-实现条件限制分组数据记录

SELECT function()
FROM table_name
WHERE CONDITION
GROUP BY field1,field2,...fieldn
HAVING CONDITION;

举例说明:

SELECT deptno,AVG(sal) average,GROUP_CONCAT(ename) enames,COUNT(ename) number
  FROM t_employee
    GROUP BY deptno
    HAVING AVG(sal)>2000;

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoMAAACVCAIAAACsHGd2AAAV+klEQVR4nO2d6c8dVXKHz9+TKFGG0SibQFGGxca7DRi8M2xjYEaRoijL35QoiUiUiTLJ3EQJxizezWLjBQyDsY0HFCkqZZHy4fJervucqlPndN/bfbuf5wPqrq5T9avq0+fwvn5v3/CX//Dvv/aDPwwAAACwdkQk/NXP/uPXf/uHfSsBAACYIiIS/vof3/yN33m0byUAAABTRETC3/zTqd/8vcf7VgIAADBFRCT87c/f+q3ff2INyWZLxPaWcWYpskljfy2F4exU6y9w/dg3xe6eJ1qFGFvSRCidh9pM1o5L53NdXu3Uc4s9Ov36V8pAZKyCruZb7Mb9nSMi4Y1/Pv29h7etKEFMsh5/kZ67uzi1g3v8l2dMfOqk/S1c6URMPgbOPseldTVfW86TEaD1OXvscbYv1empyBUfxwOD+dwNakoMSkxXdDLftPnA/Z0jIuGNf3n7oYe3ryJ6Eq0YZ5HOp706ox2z7k60vH8rnYulT9Eq+pMV5rGPDKOxyWPN33nvsl31xI/tneg05A1wMgxQUhvq7ns8VpsPydOsvUdWJElEwt/94u3vP7J9FpHMnWxu8rFJ3jC7Ek+RzuGlt1mbIhUKG85aP7UmNy7NIuzgWnxPRaXHRiiPHltnRSJPXqMWw3+mrz5GXcl0ReKzl2xtnnqz6WwHO28swxNHa2mRpKSwZP89/tqlOLshbCA6s/o9tSRzBf0+NpJqw/2p19+3rDAtqVbp8nFzJw5be5I2YNnNdtAU22UUFanZjeKz/u3lxZ7O/lS3sWhgyzhGzCKdRQP9l7L+be7LbItu42c1Jy81xNiaDR+tKKeebK8aKTxxYp/kqKzRc5wd25BdGkejL52e+J5aGnZn3gZ2lqxxnX3LCmupc74Tn37okW2astKCixwqKjScG6k1T60Wjwa/QrtpyziHFMX3q9X0+I+z6Wx73IeseE9dWvxsLbGeZYsxpDp+tkYthZar1MeD5pzN2yjZjqP1JznKMMZxsn3Q/I1ynD1J0qNOj7yssxYzW4tfkmHspW/Znmg+nmMRCW/84vRDDz+hKbOL1Mo2FLcpz47viVwqz5miZdKWOityVcep7o/h6bkRnhSaW8teddJ/p2wtaTas5m9oKJLkiW/nrdZpSK3zLDpuyMs2zdnVDdWpxU/a7ePk8KzITeyb53j+F1tvfe/hxzVly2Oqq81W4izPjh+fFslz+rTU6QyePG7f/9kW2aTLzskgdoo2fSg1JimtK+tfF99Zb1Gfs8fOvP5mtszbcqwttTRR6XFDXrVOQ/Y6dXr0G0VpqUtz2ada9opcXfUtq9OQ7Tme78SnlndiI2XSR5MbX5pFlJZn5I2DL3fWb3emKNIZUjcgjqOJaYRatsTHts6iOElLVqpfj6c/tjwbLb4WKqnT2cw2fQip+xIPWU6k9SQZp7QuA22UFt8+1QoplerxdzYtPtCGa01IKjRk96UzqTZr10IV1eXUaY/NBkyKjA/8egyFtmaPnvlvp0899PBjRaEr1ECWVbeL27EGjCfQM6R3Zgp964KVw43uEREJfz879X19J65+GnmMi6Bdo4FbCQBFiEj42b+d/sEfPN63EgAAgCkiIuHnb777uz9c3zu2AAAAYIGIhH995+wj23b1rQQAAGCKiEh489zlR3fv71sJAADAFBGR8O7lK9sPHOxbCQAAwBQRkXD2yo1dB49oHqv+K1DtIxP25yhio306KAb4t7WxpDb998exldgxS0tz+q8Zuy7bkrwFxn1xDnGq9evX4re8L1rw0nR2HK2lfjtAFhEJF659tvfw84bTqieW9jBnj2Pjst2juccHZjiPa4f9j4/tS349pUG0gHWs7k5l+1bUzKzFecsMqX49pVLrSMbRgtsyPLWU2gE8iEi4dOP2vqMvGU6rnlXxJI7tziehQVHeNTOQZ9VYQSr6XxTTI8kTP0vLVq/0TmUb7jy2Lf77uAqdFen8aKGcdn8tcd88ds0CsIyIhEs37+w79sosYuHkscfG4H7eGpNYsydjNuyaVC2p0zkeko0TCzOqNuJrfcj6FxWVvdQoJ/bRRNqX6vIWlRa3wjCG6H7NIuzgWvyiYiuObUujuqTn6nQaoQypWXvLRLa90SitgVl7o4SkTgARCRdv3t137OTyTAqFPxslp11wz7/Zg9h2O1dSv53X9kk6aw3xuGnZPTUGR//tpHZdyUul/dd8GnGykmL/iiD+Y79bdXxDZ1xaXXzNEqdwtjEZuWXtRf0sGtjmUsOy3KjGaZEdwIOIhAs37u45WrkTL7MIumzxzMhG/NiuidF8KvJm0eot7ZuW3VNjcPRfs9t1NcYmc9nanPo9dBJKC2L0xx5SFN+vtlSnHd+wNEIlc2V1+vUY8bVctl0TaSj3J9IscbtK7QAeRCScu35395FWPxM3KJ2FngdGy5u1V+StE+nsmxbQcC7qf8vmZ/V7+l9xLzRJ1aH8N6JuiMfZo7Y0jh3ftsy2iD2zUltq86czPLM3os5uhI1Tl9qT0QAaiEg4+/GXuw79eHlKhcIV2f+YJfE8M6vQkIzjEamJ8bhpCj3OnuB2nLrSjJI9eZ0ysnqKQlX0p5N6S/tfrTMZPDaW1liq09Bjx68Q5izZKMcvUpNXal8+tTsMU0ZEwntXvtj53MvZGRZPptkSttFA828YszPbPs1mr5ZqnM4eJBlH8zcE2Ho8cezSZrX/j58ttkJJJ6GCfl+M1FqoZUt8XKpTi2PET1q0vJ5Tj9oKPdn4zr4tG2MZ8ShbjK3Q05xSu60KIHz7jq0PP3/y4It9KxkK8ZNZ/Qh1++zxJK8aOgwrgqkFNiIS3v7g1vZnXuhbydhouYt3Hgds6DMA9IWIhNOXP93+tPWOLQAAAFgR8534k21PsRMDAAD0wHwnvrntqRN9KwEAAJgiIhJOX7r5BDsxAABAH2ztxAdO9K0EAABgivDbaQAAgD7hL7YAAAD6RETC2+8/8CmmsX6kcqx1aUytXpgmY53nY60LkohIeOeDz5bf7DHWGTDWujSmVi9Mk7HO87HWBUkeeNtl8hWPsXGz7GOtS7NPrV7s07SPdZ5rdcG4+fYbIHY8+/LCNNZ7P9a6NKZWL0yTsc7zsdYFSUQknLn65c5DryxMY50BY61LY2r1wjQZ6zwfa12QRETC2Wt3dx0+2bcSAACAKSIi4dz1e7uPvNq3EgAAgCkiIuH8ja/2HH2tbyUAAABTZL4T32cnBgAA6AURCRfYiQEAAHpivhPz22kAAIB+mP92+t4e/mILAACgD0QknL9+dzefYgIAAOgDEQnnrt3ZffiVvC8AAAB0jYiEcx/f3nWo/m2Xm/Jy1I0Q2SFTqxemyZrn+dqWO57fSSEi4ezVX+567sWFqWIGtJ80zOzOmVq9ME3WP8/ZiaFzRCScufLZzmd/tDCtfydmZq+CqdUL04SdGEaAiIT3Pvx0xzMnFib/DJg9SNIeh21cmkXYwbX4TrWldSWH++tdLjmrXxvSY73+/s8ibP/qugCWcc4fe3Jqx0WPhm30Sy2qC8aBiIR33r/55NPHSkfaMzg+9rtVx++cUg1avfHz2Un8TmiTN+kze3DRGcJ9BKh+1pzT2JjPDR+mOsSISDh9+fq2A0cXJudcsafmMs4hRfGLpJY6J/VX1zszf8ZtE7+TerX42nFWf6NeQ39ROQBJiuZ5xfFMeX5jN3uex3E6qQvGgYiEty5+/MT+wwtThzO7zZDSJ6dIsNOtpYZO6qp+ICvq7UTn4r+Ng5Y6AZKs+rmOp7Hmpsmom+E8F5NCRMKpC1cf33doYVrRzPa4VT8tHlrWtTh1FqVldMbvvd7q49mDt7I0DkARq57nzmlszOe66c1DMSlEJJw6f6ViJw5LO0dITcQ4zuxBtFCxjOSl0pnavi4tSFKPIdKIn8yytnpL+x+UlSg5PNZTVxfAMs7509V8bhwk42SNHdYF42D+M/EDO/HqYG4ZGCsFAACMGBEJb124uvzvxCuCH4Cy0CIAgAkiIuH0pQf+dhoAAADWxuLzxMf7VgIAADBFRCS899GtnQef71sJAADAFEl8AwQAAACsDREJ5699uYfvJwYAAOgDEQkXbtzbe/Rk30oAAACmiIiES5/c33fstb6VAAAATBERCZc//Xr/8Z8sTGP9POtY69KYWr0wTcY6z8daFySZ78Tf7D/x04VprDNgrHVpTK1emCZjnedjrQuSbO3Ex38aovdCzx58veqG2sdal2afWr3Yp2kf6zzX6oJxIyLh0qdf7+O306NjavXCNBnrPB9rXZBERMLFm7/ae+z1hWmsM2CsdWlMrV6YJmOd52OtC5LMP8V0f88R/nYaAACgB0QknLt+b/dhPk8MAADQAyISzn58d9ch3rEFAADQAyISzlz9cuezL/etBAAAYIqISHjvyu0dB1/qWwkAAMAUmX8r4hc7DvJdTAAAAD2w2In5mRgAAKAH5v9OfJt/JwYAAOiF+d9O39l16Md9KwEAAJgiIhLO37i358irC9PQ3u0Si6l7Kev669JEeuzLl1ZabzKXobNlUQuHpDGrs6Etq9M+dbYo6W9H8PQhWxd4GH7HSifb8qhVaYKBMX/b5f19Q33bpbaiGQ7+UCtFW149x8unq653eY2I14tkEC2y0+4p35CqxfTPk67y2vXaktrogWUG3rHqmzvwuqBbhvv9xP7lzKl2zXWVLrtaXauud5bCDqJFbmP3qE32RBveqEUbm81r+Geb4xxr1AVZNqhpRVI3qC5oj4iEy7e+OTDU7yc21tzZEnWh1kZ2CQ56Xauud5bCDqJF9ti14B61cU+M1HYb7UR2ZPuSUZR2qVobhI1qWpHUDaoL2iMi4f1b3xx4/qd53z4w1txNWbzsTSK5HIfU6ryieu342c3Gb2/Ua9htqU5JsxSGSDup/9Ky0VlvURNgE+H+gs3Wb6dPDO6303PsFTbp4A+1BvzruFbXqutNyrCDxD5+ezJ4qVRtVhjOybHL9mzS7KU4ndZMpx08bFDTiqRuUF3QHhEJlz65v+/Yd9+KOKgZoK2wM2X1Lwq1auyMyeU4rmvV9Wq7ghFE0+M59sTJStVmhR08OTab1/A37lf7seBkg5pWJHWD6oL2zL+f+O6ew999nnhQMyC75vrVrrkuY0X2WKp3jlJPO34ySHZHMY6D/rNynNdoUVan4dBV3uSxU6RTD2QZeMeqb+7A64JuEZFw9urtnc9997bLgcyAWYR2qSjgCpRa6Wz99pCs3SOg1C1eOGwxi6vVdkOGYXHqtE+zWZL+nj4YIhuXjLrAw/A7lpxpzlGr0gQDQ0TCmY8+33HwR30rAfiWvtYg1j4A6AURCe9+eGv70yf6VgIAADBFRCS88/6n2w4c61sJAADAFBGR8PblT55gJwYAAOgDdmIAAIA+2frt9FPH+1YCAAAwReZ/sfXZk08/37cSAACAKTL/PPEXO599cWEazmc5tM/hxR/i9EfrWmM+o5bXLir+vOmK6tXyNq4a/kl7tUg7juafPC3Vk81rqNX0a/0pbZGWpWGJT+O83fbHOLWVJ8UkY3pUOZ3Xj1avc+AKlcGQEJFw/vqdPYdfWZgGMgOcT2npOtKlRHe6OHXWsjitll3XmeSx0XOPv53XaEUyr2ZMHscibTFJ/6J6G5as3YOmp0JzrCR2yGqIj+P+a5GN/hTpMVIMimp5A68LukVEwsWbX+079urCNJAZYD/5y8dOtWuuK6s5XqGSS9ganuQ4taGn4jib1JPL08/lxhaJ8Rei3Rf7NGuv0xbr8ZTgdHD6a/23I8f2Uj3ZFAOhWt7A64JumX8X06/2H399YRrgDEg+pckn3xlkzdjrjj1kDU9yo73J4dpC6Tn2JM3mshM18Agw9FTY7dOs3a9NS2SU3ziuU2JXFPffM8pZY52wgVAtb+B1QbcM/fuJg7n0xFcHSFKhLTteleI1rnOFjRTGkupZdrNqi3IZ/sZ8KG1a0l+LYGj2jyoSZieapWjUlRzbVX/i/senhl0Tv+mMsijoHBEJ73/2zVNLO/GgZoz9xCYd/KHWgH8lanmpjfOy5yy34odo9bd97KTJRcrIFfsbY51KksKyw2035yinDE+9yUYlh1dLsgV4Tg27UWORniEz1rqgPVs/E5/4ycI0nBmQVGKsMhXRVoqR0b9C+a9WOxt9Tp6WHmeTenI5E2X9S/V44mdPs/Zu9cy2MJKuuj925NheqiebYoCMtS5oz3D/nbjuyXcGXAP2yjKoFSorxuh58lirwhNEi1M6Hzz9L9VTWm+IsO1d9Sd7yXYo0mO4ZevVLNqoJEXO62esdUG3iEi4eOPe3iMnF6aBzIBZhHapKOAKlFrpYp1GXZrIimK1ULZO46pmWRzbN0WLox2X+htuTj1Of21IkXOHepKFB/2+dN4f47SoD/HA4KPIuReMPmdHrUoTDAwRCec+/nLXcy/1rQRGy9DWFPTYDE0PwOgRkXDmo8+ffIa3XQIAAPSAiIR3P+D7iQEAAPph/q2INx/fd6RvJQAAAFNERMLpi9cf23OobyUAAABTRETCWxevP8pODAAA0AciEk5fuvHY3sN9KwEAAJgiW/9OvJ9/JwYAAOgBEQnvfnhr+1PH+1YCAAAwRUQknLnyyx0HX1iYxvq5/rHWpTG1emGajHWej7UuSCIi4fy1O7sPvbwwjXUGjLUujanVC9NkrPN8rHVBEhEJF29+tffoq0F5JXJs3Cz7WOvS7FOrF/s07WOd51pdMG5EJFy+9fUwvxWxW8Zal8bU6oVpMtZ5Pta6IImIhA8//8+nX/ijhWmsM2CsdWlMrV6YJmOd52OtC5KISLhy+78OvvTHfSsBAACYIiISrt6R5175k76VAAAATBERCdfu/vehk3/atxIAAIApIiLh+r3/OXzyz/pWAgAAMEVEJNz46n+PvPrnfSsBAACYIiISbtz/vyOv/UXfSgAAAKbItzvxUXZiAACAPtjaiV9nJwYAAOgBdmIAAIA+eWAn3qw3nW6KzhBJLX2prObf18tpN6jzAADD57udeHl53YiltheRFRmT26d26h9eGqdbNmKGAABsBBu8E6+firbEQ+I++3fiZf/SOJ3DJAEA6IT0vxN7FlltVwjKb7mN06S/J7WWtE0cZ3xPiqRbo2nZUJp/aZzSej2RnX0AAACDxE7sX17jzSCktthk2Ky/P3s2V3Z4qeY6hQ1jXL4dZJbagCvitDzOFggAAEU0d+KKvVDbIbRj281PY1RFwKTbLML2bxPfE1PzL43j0VPaw7obBwAAyyT+dto/2FjZjWNt52iZvXQX8cSxPSuCh6WdzxlT86/YOJOe2kCnME9GAAAwaPUXW0k3I05jF8n6F2UvjePR4NHfRqd26vG33WwZbY6d6QAAwElzJ17GHml4apfsXcS/uCel2jtHUQme0jw6G6M0/dn4mr8Rx5Dhr9e2Z9MBAIAH3rEFAADQJ+zEAAAAfcJODAAA0CfsxAAAAH3CTgwAANAn7MQAAAB9wk4MAADQJ+zEAAAAfSIi/w+1grIikNF0MwAAAABJRU5ErkJggg==" alt="" />

MYSQL数据库学习十 单表数据记录查询的更多相关文章

  1. MYSQL数据库学习十一 多表数据记录查询

    11.1 关系数据操作 并(UNION):把具有相同字段数目和字段类型的表合并到一起. 笛卡尔积(CARTESIAN PRODUCT):没有连接条件表关系的返回结果.字段数=table1字段数+tab ...

  2. MySQL多表数据记录查询详解

    在实际应用中,经常需要实现在一个查询语句中显示多张表的数据,这就是所谓的多表数据记录连接查询,简称来年将诶查询. 在具体实现连接查询操作时,首先将两个或两个以上的表按照某个条件连接起来,然后再查询到所 ...

  3. Mysql-多表数据记录查询

    多表数据记录查询 一.关系数据操作 并(UNION) 并就是把具有相同字段数目和字段类型的表合并到一起 笛卡尔积(CARTESIAN PRODUCT) 笛卡尔积就是没有连接条件表关系返回的结果. 内连 ...

  4. Mysql--单表数据记录查询

    1.简单数据记录查询 1.1 简单数据查询 1.1.1 查询所有字段数据 例子:      1.1.2 "*"符号的使用 语法: 例子: 1.1.3 查询指定字段数据 例子:   ...

  5. MySQL数据库实验:任务二 表数据的插入、修改及删除

    目录 任务二 表数据的插入.修改及删除 一.利用界面工具插入数据 二.数据更新 (一)利用MySQL命令行窗口更新数据 (二)利用Navicat for MySQL客户端工具更新数据 三.数据库的备份 ...

  6. MySQL数据库篇之单表查询

    主要内容: 一.单表查询的语法 二.关键字的执行优先级 三.简单查询 四.where约束 五.分组查询 group by 六.having过滤 七.查询排序 order by 八.限制查询的记录数 l ...

  7. MYSQL数据库学习十八 数据库维护和性能提高

    18.1 数据备份 可能造成数据损失的原因有: 存储介质故障:保存数据库文件的磁盘设备损坏,用户没有数据库备份导致数据彻底丢失. 用户的错误操作:如误删了某些重要数据,甚至整个数据库. 服务器的彻底瘫 ...

  8. MYSQL数据库学习十六 安全性机制

    16.1 MYSQL数据库所提供的权限 16.1.1 系统表 mysql.user 1. 用户字段 Host:主机名: User:用户名: Password:密码. 2. 权限字段 以“_priv”字 ...

  9. MYSQL数据库学习十五 事务

    15.1 事务概述 当多个用户访问同一份数据,一个用户在更改数据的过程中可能有其他用户同时发起更改请求,为保证数据库记录的更新从一个一致性状态变为另一个一致性状态,使用事务处理是非常必要的. 事务有以 ...

随机推荐

  1. java 多线程之wait(),notify,notifyAll(),yield()

    wait(),notify(),notifyAll()不属于Thread类,而是属于Object基础类,也就是说每个对像都有wait(),notify(),notifyAll()的功能.因为都个对像都 ...

  2. javascript选择器querySelector和querySelectorAll的使用和区别

    querySelector 和 querySelectorAll 方法是 W3C Selectors API规范中定义的.他们的作用是根据 CSS 选择器规范,便捷定位文档中指定元素. 目前几乎主流浏 ...

  3. python关键字,运算符

    关键字: and且 or 或 not否 del import导入 from import的来源 whilewhile循环 for for循环 if elif else条件结构 break contin ...

  4. TinyFrame升级之五:全局缓存的设计及实现

    在任何框架中,缓存都是不可或缺的一部分,本框架亦然.在这个框架中,我们的缓存分为两部分:内存缓存和单次请求缓存.简单说来,就是一个使用微软提供的MemoryCache做扩展,并提供全局唯一实例:另一个 ...

  5. jquery点击label触发2次的问题

    今天写问卷的时候遇到个label点击的时候,监听的click事件被执行两次:产生这个的原因么...事件冒泡 <div class="questionBox checkBox" ...

  6. NSString 的 compare 方法

    - (NSComparisonResult)compare:(NSString *)string options:(NSStringCompareOptions)mask range:(NSRange ...

  7. Linux vagrant&plus;virtualbox环境搭建步骤

    Linux vagrant+virtualbox环境搭建步骤 Vagrant 是一款用来构建虚拟开发环境的工具,非常适合 php/python/ruby/java 这类语言开发 web 应用. 我们可 ...

  8. MySQL数据类型(四)

    一.数据类型 二.整型类型 tinyInt: 1个字节:-128-127(有符号) 是否有符号,可以定义时,使用unsign标识,表示无符号的,不写表示有符号的 Create table studen ...

  9. BZOJ 3260 跳

    YY一下发现答案基本上就是(n+1)+ΣC(n+i,i),其中i=1...m. 然后发现后面每一项可以递推,只要处理1..m的逆元就好了. 这题很容易爆long long,每一步都要取模. #incl ...

  10. MariaDB Galera Cluster集群

    一.MariaDB Galera Cluster概要: 1.简述: MariaDB Galera Cluster 是一套在mysql innodb存储引擎上面实现multi-master及数据实时同步 ...