TensorFlow修改变量值后,需要重新赋值,assign用起来有点小技巧,就是需要需要弄个操作子,运行一下。
下面这么用是不行的
1
2
3
4
5
6
7
8
9
10
11
12
|
import tensorflow as tf
import numpy as np
x = tf.Variable( 0 )
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()
sess.run(init)
print (x. eval ())
x.assign( 1 )
print (x. eval ())
|
正确用法
1.
1
2
3
4
5
6
7
8
|
import tensorflow as tf
x = tf.Variable( 0 )
y = tf.assign(x, 1 )
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print sess.run(x)
print sess.run(y)
print sess.run(x)
|
2.
1
2
3
4
5
6
7
8
9
|
In [ 212 ]: w = tf.Variable( 12 )
In [ 213 ]: w_new = w.assign( 34 )
In [ 214 ]: with tf.Session() as sess:
...: sess.run(w_new)
...: print (w_new. eval ())
# output
34
|
3.
1
2
3
4
5
6
7
|
import tensorflow as tf
x = tf.Variable( 0 )
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print (sess.run(x)) # Prints 0.
x.load( 1 , sess)
print (sess.run(x)) # Prints 1.
|
我的方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import numpy as np #这是Python的一种开源的数值计算扩展,非常强大
import tensorflow as tf #导入tensorflow
##构造数据##
x_data = np.random.rand( 100 ).astype(np.float32) #随机生成100个类型为float32的值
y_data = x_data * 0.1 + 0.3 #定义方程式y=x_data*A+B
##-------##
##建立TensorFlow神经计算结构##
weight = tf.Variable(tf.random_uniform([ 1 ], - 1.0 , 1.0 ))
biases = tf.Variable(tf.zeros([ 1 ]))
y = weight * x_data + biases
w1 = weight * 2
loss = tf.reduce_mean(tf.square(y - y_data)) #判断与正确值的差距
optimizer = tf.train.GradientDescentOptimizer( 0.5 ) #根据差距进行反向传播修正参数
train = optimizer.minimize(loss) #建立训练器
init = tf.global_variables_initializer() #初始化TensorFlow训练结构
#sess=tf.Session() #建立TensorFlow训练会话
sess = tf.InteractiveSession()
sess.run(init) #将训练结构装载到会话中
print ( 'weight' ,weight. eval ())
for step in range ( 400 ): #循环训练400次
sess.run(train) #使用训练器根据训练结构进行训练
if step % 20 = = 0 : #每20次打印一次训练结果
print (step,sess.run(weight),sess.run(biases)) #训练次数,A值,B值
print (sess.run(loss))
print ( 'weight new' ,weight. eval ())
#wop=weight.assign([3])
#wop.eval()
weight.load([ 1 ],sess)
print ( 'w1' ,w1. eval ())
|
以上这篇对TensorFlow的assign赋值用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/mustar_2017/article/details/79336679