07: python基础 零碎知识点

时间:2021-10-07 08:49:58

目录:

1.1 python异常处理返回顶部

  1、Python中各种内建异常

    1)  Exception: 所有异常类型
2) AttributeError: 特性引用或赋值失败时引发
3) IOError: 试图打开不存在的文件时引发
4) IndexError: 在使用序列中不存在的索引时引发
5) KeyError: 在使用映射时不存在的键时引发
6) NameError: 在找不到变量名字时引发
7) SyntaxError: 代码有语法错误时引发
8) TypeError: 函数应用于错误类型的对象时引发
9) ValueError: 函数应用于正确类型的对象,但该对象使用不合适的值时引发
10) ZeroDivisionError: 在除操作时第二个参数为0时引发

Python中各种内建异常

   2、几种常见捕获异常的方法

      1. 捕获单个异常

names = ['alex','jack']
try:
names[2]
except IndexError as e:
print("列表操作错误",e)
# 运行结果: 列表操作错误 list index out of range

捕获单个异常

      2. 多个except子句,捕获多个异常

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except ZeroDivisionError:
print("The second number can't zero")
except NameError:
print('That was not a number....')

多个except子句

      3. 一个except捕获多个异常

        说明:如果需要用一个块扑捉多个异常类型,那么可以将他们作为元组列出

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except (ZeroDivisionError, TypeError, NameError):
print("your numbers were bogus...")

一个except捕获多个异常

      4. 捕捉对象: except (NameError) as e

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except (ZeroDivisionError, TypeError, NameError) as e:
print(e)

捕捉对象: except (NameError) as e

import traceback

try:
name = int('df11')
except Exception as e:
print(traceback.format_exc()) # Traceback (most recent call last):
# File "C:/Users/tom/Desktop/cmdb_cli_ser/AutoClient/test01.py", line 4, in <module>
# name = int('df11')
# ValueError: invalid literal for int() with base 10: 'df11'

traceback.format_exc()获取详细异常信息

      5. 正真的全捕捉: except

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except:
print('something wrong happened')

正真的全捕捉: except

      6. 异常使用结构

try:
# 主代码块
pass
except KeyError as e:
# 异常时,执行该块
pass
else:
# 主代码块正常执行完,执行该块
pass
finally:
# 无论异常与否,最终执行该块
pass

异常使用结构

      7. 主动触发异常

try:
raise Exception('错误了。。。')
except Exception as e:
print(e)
# 运行结果: 错误了。。。

主动触发异常

      8. 自定义异常

class WupeiqiException(Exception):
def __init__(self, msg):
self.message = msg
def __str__(self):
return self.message #最终打印的结果就是这里return返回的值 try:
raise WupeiqiException('我的异常') #这里的字符串就会传入到class类的msg中
except WupeiqiException as e:
print(e)
# 运行结果: 我的异常

自定义异常

      9. 断言

    作用:Python的assert是用来检查一个条件,如果它为真,就不做任何事。如果它为假,则会抛出AssertError并且包含错误信息

n = 1
assert type(n) is int
print('aaaa')
# 1. Assert后的断言结果成立时才会执行:print('aaaa')
# 2. Assert后的断言结果不成立时会引发AssertError并退出程序

断言

1.2 三元运算,filter和map与lambda表达式结合使用举例返回顶部

   1、三元运算

      1. 三元运算格式:  result=值1 if x<y else 值2    if条件成立result=1,否则result=2

      2. 作用:三元运算,又称三目运算,主要作用是减少代码量,是对简单的条件语句的缩写

name = 'Tom' if 1 == 1 else 'fly'
print(name)
# 运行结果: Tom

三元运算

f = lambda x:x if x % 2 != 0 else x + 100
print(f(10)) #

三元运算与lambda结合

  2、lambda基本使用

      1. lambda只是一个表达式,函数体比def简单很多。

      2. lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

      3. lambda表达式是起到一个函数速写的作用。允许在代码内嵌入一个函数的定义。

      4. 格式:lambda的一般形式是关键字lambda后面跟一个或多个参数,紧跟一个冒号,之后是一个表达式。

f = lambda x,y,z:x+y+z
print(f(1,2,3)) # my_lambda = lambda arg : arg + 1
print(my_lambda(10)) #

lambda基本使用

  3、filter与lambda表达式结合使用

      1. filter()函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项传到自定义

          的过滤函数里处理,并返回结果做过滤。最终一次性返回过滤后的结果。

      2. filter()函数有两个参数:

        第一个,自定函数名,必须的

        第二个,需要过滤的列,也是必须的

l1= [11,22,33,44,55]
a = filter(lambda x: x<33, l1)
print(list(a))

利用 filter、lambda表达式 获取l1中元素小于33的所有元素 l1 = [11, 22, 33, 44, 55]

l1= [11,22,33,44,55]
def func(num):
if num>33:
return num
result=filter(func,l1)
print(list(result))

自定义函数代替lambda实现相同功能

  4、map与lambda表达式结合使用

      1. map使用:第一个参数接收一个函数名,第二个参数接收一个可迭代对象

lt = [1, 2, 3, 4, 5, 6]
def add(num):
return num + 1
rs = map(add, lt)
print(list(rs)) #运行结果: [2, 3, 4, 5, 6, 7]

map最基本使用

      2. 利用map,lambda表达式将所有偶数元素加100

l1= [11,22,33,44,55]
ret = map(lambda x:x if x % 2 != 0 else x + 100,l1)
print(list(ret))
# 运行结果: [11, 122, 33, 144, 55]

利用map,lambda表达式将所有偶数元素加100

l1= [11,22,33,44,55]
def add(num):
if num%2 == 0:
return num
else:
return num + 100
rs = map(add, l1)
print(list(rs))

自定义函数代替lambda实现相同功能

  5、总结:filter()和map()函数区别

      1. Filter函数用于对序列的过滤操作,过滤出需要的结果,一次性返回他的过滤设置于的是条件

      2. Map函数是对序列根据设定条件进行操作后返回他设置的是操作方法,无论怎样都会返回结果

  6、reduce函数

      1. reduce()函数即为化简函数,它的执行过程为:每一次迭代,都将上一次的迭代结果与下一个元素一同传入二元func函数中去执行。

      2. 在reduce()函数中,init是可选的,如果指定,则作为第一次迭代的第一个元素使用,如果没有指定,就取seq中的第一个元素。

from functools import reduce
def f(x, y):
return x + y print(reduce(f, [1, 3, 5, 7, 9])) #
# 1、先计算头两个元素:f(1, 3),结果为4;
# 2、再把结果和第3个元素计算:f(4, 5),结果为9;
# 3、再把结果和第4个元素计算:f(9, 7),结果为16;
# 4、再把结果和第5个元素计算:f(16, 9),结果为25;
# 5、由于没有更多的元素了,计算结束,返回结果25。 print( reduce(lambda x, y: x + y, [1, 3, 5, 7, 9]) ) #

使用reduce进行求和运算

'''使用reduce将字符串反转'''
s = 'Hello World'
from functools import reduce result = reduce(lambda x,y:y+x,s)
# 1、第一次:x=H,y=e => y+x = eH
# 2、第二次:x=l,y=eH => y+x = leH
# 3、第三次:x=l,y=leH => y+x = lleH
print( result ) # dlroW olleH

使用reduce将字符串反转

  7、sorted函数

    1)sorted和sort区别

        1. sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。

        2. sort 是对已经存在的列表进行操作,无返回值,而 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。

    2)sorted使用

      sorted 语法:sorted(iterable, cmp=None, key=None, reverse=False)

        iterable -- 可迭代对象。
        cmp -- 比较的函数
        key -- 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
        reverse -- 排序规则,reverse = True 降序 , reverse = False 升序(默认)。

students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
print( sorted(students, key=lambda s: s[2], reverse=False) ) # 按年龄排序
# 结果:[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

sorted对列表排序

d = {'k1':1, 'k3': 3, 'k2':2}
# d.items() = [('k1', 1), ('k3', 3), ('k2', 2)]
a = sorted(d.items(), key=lambda x: x[1])
print(a) # [('k1', 1), ('k2', 2), ('k3', 3)]

sorted对字典排序

1.3 内置方法返回顶部

#1、all 判断对象 全部为正才为真,有一个为假就为假
print(all([0,1,-5])) # False
print(all([1,-1])) # True #2、any 判断对象 全部为假才为假,有一个为真就为真
print(any([0,1,-5])) # True
print(any([])) # False #3、bin 将十进制转换成二进制
print(bin(8)) # 0b1000 #4、callable 判断对象是否可以调用
def func():pass
print(callable(func)) # True #5、chr() 把数字对应的ascii码值打印出来
print(chr(98)) # b
#6、ord() 将ascii码中对应用的a,b等打印出对应的数字
print(ord("a")) # #7、compile() 将字符串转换成可执行的代码
s="print('hello world')"
py_obj = compile(s,"err.log","exec")
exec(py_obj) # hello world #8、dir() 查一个对象有哪些方法:
a = 'aaa'
print(dir(a)) #9、eval() 将一个数据类型的字符串变成对应的数据类型 #10、filter() 在一组数据中过滤出你想要的结果
res = filter(lambda n:n>5,range(10))
print(list(res)) # [6, 7, 8, 9] #11、map() 生成对应的数据
res = map(lambda n:n**2,range(10))
print(list(res)) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] #12、reduce 返回运算结果
import functools
res = functools.reduce(lambda x,y:x+y,range(10))
print(res) # #13、divmod() 将两个数相除商的值和余数存到一个元组中
print(divmod(5,2)) # (2, 1) #14、frozenset() 将集合变成不可变改变的
a = frozenset(set([1,2,3,2,3,5,6])) #15、globals() 打印这个文件中所有定义的变量
print(globals()) #16、hash 将汉字,字符串等对象转换成对应的有序数字
print(hash("tom")) # #17、hex() 将十进制数字转成十六进制
print(hex(255)) # 0xff #18、oct() 转八进制
print(oct(8)) # 0o10 #19、pow() 计算多少次幂
print(pow(2,8)) # 2的8次方: 256 #20、round() 包留小数点后几位有效数字
print(round(1.43234,2)) # 1.43 #21、sorted() 将无序的值变成有序的
d = {6:2,8:0,1:4,-5:6}
print(d)
print(sorted(d.items())) #22、zip 将两个列表中的数据按照位置一一对应
a = [1,2,3,4]
b = ['a','b','c','d']
l = zip(a,b)
print(list(l)) # [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')] #23、__import__ 可以使用字符串的 .py名称将模块导入
__import__()("test3")

23个内置方法

1.4 动态导入模块返回顶部

  1、动态导入基本使用

    测试目的: 在.py 文件中动态导入同级目录中的lib模块下的aa.py文件,这样可以调用aa.py下的类属性

07: python基础 零碎知识点

import importlib
aa = importlib.import_module('lib.aa') #这里的导入的直接就是aa.py这个文件
#<module 'lib.aa' from 'C:\\Users\\admin\\PycharmProjects\\s14\\Day7作业\\lib\\aa.py'>
print(aa.C().name) #直接可以打印 lib模块下的aa.py文件中类C的属性 self.name = Tom

法1:官方建议版 动态导入lib模块下的aa.py文件

mod = __import__('lib.aa')
#<module 'lib' from 'C:\\Users\\admin\\PycharmProjects\\s14\\Day7作业\\lib\\__init__.py'>
obj = mod.aa.C() #obj就是aa.py中类C的实例对象
print(obj.name) #打印出类C的属性name的值 self.name = Tom

法2:动态导入模块普通版 动态导入lib模块下的aa.py文件

   2、cmdb中动态导入插件获取cpu等信息

import importlib

PLUGINS_DICT = {
'cpu': 'src.plugins.cpu.CpuPlugin',
'disk': 'src.plugins.disk.DiskPlugin',
} for k, v in PLUGINS_DICT.items():
# module_path = module_path src.plugins.cpu
# cls_name = CpuPlugin
module_path, cls_name = v.rsplit('.', 1)
cls = getattr(importlib.import_module(module_path), cls_name)
obj = cls('c1.com').execute()
# cls = getattr(importlib.import_module('module_path src.plugins.cpu'), 'CpuPlugin')

run.py 动态导入模块

class BasePlugin(object):
def execute(self):
return self.linux() def linux(self):
raise Exception('You must implement linux method.') class BaseResponse(object):
def __init__(self):
self.status = True
self.message = None
self.data = None
self.error = None class CpuPlugin(BasePlugin):
def linux(self):
response = BaseResponse()
return response

src\plugins\cpu.py 其中的cup插件

07: python基础 零碎知识点的更多相关文章

  1. python基础全部知识点整理&comma;超级全&lpar;20万字&plus;&rpar;

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  2. Python基础——细琐知识点

    注释 Python注释有两种方式 使用# 类似于Shell脚本的注释方式,单行注释 使用'''或者""" 使用成对的'''或者""".这种注 ...

  3. Python基础入门知识点——Python中的异常

    前言 在先前的一些章节里你已经执行了一些代码,你一定遇到了程序“崩溃”或因未解决的错误而终止的情况.你会看到“跟踪记录(traceback)”消息以及随后解释器向你提供的信息,包括错误的名称.原因和发 ...

  4. Python基础入门知识点——深浅拷贝

    深浅拷贝 对象引用.浅拷贝.深拷贝(拓展.难点.重点) Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果 其实这个是由于共享内存导致的结果 拷贝 ...

  5. C&num;基础零碎知识点摘录

    1.类分为静态类个非静态类(实例类) 静态类不能创建对象,使用方法时,直接类名.方法名(),常用的静态类有Console类 实例类:创建对象时通过对象调用类的方法 2.当我们声明一个类成员为静态时,意 ...

  6. 重学Python - Day 07 - python基础 -&gt&semi; linux命令行学习 -- 常用命令 一

    常用命令和使用方法如下: man man 命令 #可以查询命令的用法 cat 和 tac cat是正序显示文件内容 tac是倒叙显示文件内容 sort 对文件内容排序 uniq 忽略文件中重复行 hi ...

  7. python基础---递归函数 知识点自查填空题

    什么是递归函数:在函数中调()叫递归函数. 递归函数最大递归深度是997或998----是()设的限制. 注:如果递归次数太多,就不适合使用递归来解决问题. 递归的缺点: 占(). 递归的优点:会让代 ...

  8. Python基础入门知识点——if 语句简介

    前言 if 语句是最简单的选择结构.如果满足条件就执行设定好的操作,不满足条件就执行其他其他操作. 判断的定义 如果 条件满足,才能做某件事情, 如果 条件不满足,就做另外一件事情,或者什么也不做 判 ...

  9. 学习python须知,Python基础进阶需掌握哪些知识点?

    Python基础进阶需要掌握哪些知识点?Python将是每个程序员的标配,有编程基础再掌握Python语言对于日后的升职加薪更有利.Python语言简洁利于理解,语法上相对容易能够让开发者更专注于业务 ...

随机推荐

  1. Node&period;js Web 开发框架大全《静态文件服务器篇》

    这篇文章与大家分享优秀的 Node.js 静态服务器模块.Node 是一个服务器端 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用程序,编写能 ...

  2. 初试Celery

    从@到celery 一.文档: 官网:http://www.celeryproject.org/ Celery3.1 ------------2016-7-19 18:26:55-- source:[ ...

  3. Unicode基本概念

    Unicode是计算机可以支持这个星球上多种语言的秘密武器.通过使用一个或者多个字节来表示一个字符的方法突破了ASCII的限制.Unicode可以表示超过90000个字符. 使用方式:a=u'hell ...

  4. 可控制转速CSS3旋转风车特效

    以前制作网页动画一般使用javascript,现在已经有越来越多动动画使用纯CSS实现,并且动画的控制也可以使用CSS3实现,因为CSS 3来了,CSS 3的动画功能确实强大.以下是一个纯CSS3制作 ...

  5. JDK源码分析(9)之 WeakHashMap 相关

    平时我们使用最多的数据结构肯定是 HashMap,但是在使用的时候我们必须知道每个键值对的生命周期,并且手动清除它:但是如果我们不是很清楚它的生命周期,这时候就比较麻烦:通常有这样几种处理方式: 由一 ...

  6. 进程创建fork&lpar;&rpar;

    简单进程创建例子: #include <stdio.h> #include <sys/types.h> #include <sys/wait.h> #include ...

  7. 阿里云服务器配置免费https服务

    过程总述 购买服务器,购买域名,备案 申请ssl证书 DNS验证 上传证书,配置nginx 很关键,打开端口!!!阿里云的443端口默认是不打开的 1.购买服务器,域名,备案 服务器我是买的阿里云的, ...

  8. mybatis-plus 从2&period;x到3&period;x升级指南

      Mybatis-Plus mybatis-plus 2.x 到 3.x 有以下改进 分页查询可以直接返回Ipage<T>的子类(下面会有详细使用说明) Wrapper<T> ...

  9. 使用FastCoder写缓存单例

    使用FastCoder写缓存单例 FastCoder可以存储字典,数组,鄙人将FastCoder封装,CoreData可以缓存的东西,用这个都可以缓存,但是只适合缓存少量的数据(不适合存储几万条数据) ...

  10. Chapter 5 软件工程中的形式化方法

    从广义上讲,形式化方法是指将离散数学的方法用于解决软件工程领域的问题,主要包括建立精确的数学模型以及对模型的分析活动.狭义的讲,形式化方法是运用形式化语言,进行形式化的规格描述.模型推理和验证的方法. ...