
学习DIP第44天
转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!!
文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro
更多细节参考:http://tony4ai.com/categories/数字图像处理/
开篇废话
废话开始,Sobel我们并不陌生,之前在图像增强的时候也已经介绍了它的作用,并且还杜撰了一下它的来历,也就是用Robert平移相加(类似于相关或卷积),下面可以给出Sobel的另一个来源,因为Sobel数学推导的过程和资料很少,而且当时提出Sobel的时候应该也是没有数学论证的,而只是简单的实验后,发现效果非常好。
我们还要介绍下扩展Sobel算子,Sobel原始模型为标准3x3模板,但可以扩展成5x5到任意奇数x奇数的大小,而模板系数的确定可以根据帕斯卡三角来计算,真的很神奇。Sobel之后延伸出了Scharr算子,这个算子也为3x3算子,但是效果据说比3x3的Sobel好,后面文章将会给出具体对比。
算子形式
内容迁移至