[LeetCode] 207. Course Schedule 课程清单

时间:2021-08-05 06:43:33

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
  3. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  4. Topological sort could also be done via BFS.

这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:

解法一:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};

下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:

解法二:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/207

类似题目:

Minimum Height Trees

Course Schedule II

Course Schedule III

Graph Valid Tree

参考资料:

https://leetcode.com/problems/course-schedule/

https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution

https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java

https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 207. Course Schedule 课程清单的更多相关文章

  1. &lbrack;LeetCode&rsqb; 207&period; Course Schedule 课程安排

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  2. &lbrack;LeetCode&rsqb; Course Schedule 课程清单

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  3. LN &colon; leetcode 207 Course Schedule

    lc 207 Course Schedule 207 Course Schedule There are a total of n courses you have to take, labeled ...

  4. LeetCode - 207&period; Course Schedule

    207. Course Schedule Problem's Link ---------------------------------------------------------------- ...

  5. Java for LeetCode 207 Course Schedule【Medium】

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  6. &lbrack;LeetCode&rsqb; 207&period; Course Schedule 课程表

    题目: 分析: 这是一道典型的拓扑排序问题.那么何为拓扑排序? 拓扑排序: 有三件事情A,B,C要完成,A随时可以完成,但B和C只有A完成之后才可完成,那么拓扑排序可以为A>B>C或A&g ...

  7. &lbrack;leetcode&rsqb;207&period; Course Schedule课程表

    在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在). /* ...

  8. &lpar;medium&rpar;LeetCode 207&period;Course Schedule

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  9. LeetCode 207&period; Course Schedule(拓扑排序)

    题目 There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have p ...

随机推荐

  1. this&period;class&period;getClassLoader&lpar;&rpar;怎么理解?

    this.class.getClassLoader()怎么理解? java是面向对象语言,面向对象的语言的宗旨就是万事万物皆对象,那么类也是一个对象,类里面的属性和方法也是对象.java里面的所 有的 ...

  2. linux的终端,网络虚拟终端,伪终端(转)

    转自http://www.xuebuyuan.com/877887.html 2013年09月07日 ⁄ 综合 ⁄ 共 4047字 ⁄ 字号 小 中 大 ⁄ 评论关闭 Linux上许多网络服务应用,如 ...

  3. nodejs cookie与session

    cookie.session cookie:在浏览器保存一些数据,每次请求都会带过来 *不安全.有限(4K) session:保存数据,保存在服务端 *安全.无限 ------------------ ...

  4. &lbrack;物理学与PDEs&rsqb;第2章习题13 将 &dollar;p&dollar; - 方程组化为守恒律形式的一阶拟线性对称双曲组

    试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{ ...

  5. svn仓库迁移

    注意事项 1.仅迁移代码.日志.版本信息,(用户.权限.配置即conf目录需要手动移动或重新配置) 2.新仓库需无代码,即新建仓库后不要进行上传操作,否则迁移可能造成冲突,导致迁移失败 操作步骤 1. ...

  6. tensorflow由于未初始化变量所导致的错误

     版权声明:本文为博主原创文章,如需转载请注明出处,谢谢. https://blog.csdn.net/qq_38542085/article/details/78742295 初始代码 import ...

  7. 理解HTTP协议(转载)

    一.HTTP协议的演进 HTTP(HyperText Transfer Protocol)协议是基于TCP的应用层协议,它不关心数据传输的细节,主要是用来规定客户端和服务端的数据传输格式,最初是用来向 ...

  8. Ajax返回乱码

    1.关于JSP页面中的pageEncoding和contentType两种属性的区别: pageEncoding是jsp文件本身的编码,contentType的charset是指服务器发送给客户端时的 ...

  9. sqlplus与shell互相传值的几种情况

    2578人阅读   sqlplus与shell互相传值的几种情况 情况一:在shell中最简单的调用sqlplus $cat test.sh #!/bin/sh sqlplus oracle/orac ...

  10. Sublime Text 3 web 开发常用配置

    前沿 Sublime Text 是一个代码编辑器(Sublime Text 2是收费软件,但可以无限期试用),也是HTML和散文先进的文本编辑器.Sublime Text是由程序员Jon Skinne ...