RNN,写起来真的烦

时间:2021-12-31 00:39:10

曾经,为了处理一些序列相关的数据,我稍微了解了一点递归网络 (RNN) 的东西。由于当时只会 tensorflow,就从官网上找了一些 tensorflow 相关的 demo,中间陆陆续续折腾了两个多星期,才对 squence to sequence,sequence classification 这些常见的模型和代码有了一些肤浅的认识。虽然只是多了时间这个维度,但 RNN 相关的东西,不仅是模型搭建上,在数据处理方面的繁琐程度也比 CNN 要高一个 level。另外,我也是从那个时候开始对 tensorflow 产生抵触心理,在 tf 中,你知道 RNN 有几种写法吗?你知道 dynamic_rnn 和 static_rnn 有什么区别吗?各种纷繁复杂的概念无疑加大了初学者的门槛。后来我花了一两天的时间转向 pytorch 后,感觉整个世界瞬间清净了 (当然了,学 tf 的好处就是转其他框架的时候非常快,但从其他框架转 tf 却可能生不如死)。pytorch 在模型搭建和数据处理方面都非常好上手,比起 tf 而言,代码写起来更加整洁干净,而且开发人员更容易理解代码的运作流程。不过,在 RNN 这个问题上,新手还是容易犯嘀咕。趁着这一周刚刚摸清了 pytorch 搭建 RNN 的套路,我准备记录一下用 pytorch 搭建 RNN 的基本流程,以及数据处理方面要注意的问题,希望后来的同学们少流点血泪...

至于 tf 怎么写 RNN,之后有闲再补上 (我现在是真的不想回去碰那颗烫手的山芋