// 面试题55(二):平衡二叉树
// 题目:输入一棵二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中
// 任意结点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
#include <iostream>
#include "BinaryTree.h"
// ====================方法1====================
//迭代的从上到下,判断每个节点是否是平衡树,会导致一个节点的深度重复计算
int TreeDepth(const BinaryTreeNode* pRoot)//检测节点深度
{
if (pRoot == nullptr)
return ;
int nLeft = TreeDepth(pRoot->m_pLeft);
int nRight = TreeDepth(pRoot->m_pRight);
return (nLeft > nRight) ? (nLeft + ) : (nRight + );
}
bool IsBalanced_Solution1(const BinaryTreeNode* pRoot)//记录
{
if (pRoot == nullptr)
return true;
int left = TreeDepth(pRoot->m_pLeft);
int right = TreeDepth(pRoot->m_pRight);
int diff = left - right;
if (diff > || diff < -)
return false;
return IsBalanced_Solution1(pRoot->m_pLeft)
&& IsBalanced_Solution1(pRoot->m_pRight);
}
// ====================方法2====================
//从下到上检测,如果节点是平衡树,就记录其深度,每个节点被计算一次
bool IsBalanced(const BinaryTreeNode* pRoot, int* pDepth);
bool IsBalanced_Solution2(const BinaryTreeNode* pRoot)
{
int depth = ;
return IsBalanced(pRoot, &depth);
}
bool IsBalanced(const BinaryTreeNode* pRoot, int* pDepth)
{
if (pRoot == nullptr)
{
*pDepth = ;
return true;
}
int left, right;
if (IsBalanced(pRoot->m_pLeft, &left)
&& IsBalanced(pRoot->m_pRight, &right))//if条件是找到子节点开始从下向上判断节点是不是平衡树
{
int diff = left - right;
if (diff <= && diff >= -)//如果是,记录最大深度
{
*pDepth = + (left > right ? left : right);
return true;
}
}
return false;
}
// ====================测试代码====================
void Test(const char* testName, const BinaryTreeNode* pRoot, bool expected)
{
if (testName != nullptr)
printf("%s begins:\n", testName);
printf("Solution1 begins: ");
if (IsBalanced_Solution1(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
printf("Solution2 begins: ");
if (IsBalanced_Solution2(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
}
// 完全二叉树
// 1
// / \
// 2 3
// /\ / \
// 4 5 6 7
void Test1()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
BinaryTreeNode* pNode2 = CreateBinaryTreeNode();
BinaryTreeNode* pNode3 = CreateBinaryTreeNode();
BinaryTreeNode* pNode4 = CreateBinaryTreeNode();
BinaryTreeNode* pNode5 = CreateBinaryTreeNode();
BinaryTreeNode* pNode6 = CreateBinaryTreeNode();
BinaryTreeNode* pNode7 = CreateBinaryTreeNode();
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, pNode6, pNode7);
Test("Test1", pNode1, true);
DestroyTree(pNode1);
}
// 不是完全二叉树,但是平衡二叉树
// 1
// / \
// 2 3
// /\ \
// 4 5 6
// /
//
void Test2()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
BinaryTreeNode* pNode2 = CreateBinaryTreeNode();
BinaryTreeNode* pNode3 = CreateBinaryTreeNode();
BinaryTreeNode* pNode4 = CreateBinaryTreeNode();
BinaryTreeNode* pNode5 = CreateBinaryTreeNode();
BinaryTreeNode* pNode6 = CreateBinaryTreeNode();
BinaryTreeNode* pNode7 = CreateBinaryTreeNode();
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, nullptr, pNode6);
ConnectTreeNodes(pNode5, pNode7, nullptr);
Test("Test2", pNode1, true);
DestroyTree(pNode1);
}
// 不是平衡二叉树
// 1
// / \
// 2 3
// /\
// 4 5
// /
//
void Test3()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
BinaryTreeNode* pNode2 = CreateBinaryTreeNode();
BinaryTreeNode* pNode3 = CreateBinaryTreeNode();
BinaryTreeNode* pNode4 = CreateBinaryTreeNode();
BinaryTreeNode* pNode5 = CreateBinaryTreeNode();
BinaryTreeNode* pNode6 = CreateBinaryTreeNode();
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode5, pNode6, nullptr);
Test("Test3", pNode1, false);
DestroyTree(pNode1);
}
// 1
// /
// 2
// /
// 3
// /
// 4
// /
//
void Test4()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
BinaryTreeNode* pNode2 = CreateBinaryTreeNode();
BinaryTreeNode* pNode3 = CreateBinaryTreeNode();
BinaryTreeNode* pNode4 = CreateBinaryTreeNode();
BinaryTreeNode* pNode5 = CreateBinaryTreeNode();
ConnectTreeNodes(pNode1, pNode2, nullptr);
ConnectTreeNodes(pNode2, pNode3, nullptr);
ConnectTreeNodes(pNode3, pNode4, nullptr);
ConnectTreeNodes(pNode4, pNode5, nullptr);
Test("Test4", pNode1, false);
DestroyTree(pNode1);
}
// 1
// \
// 2
// \
// 3
// \
// 4
// \
//
void Test5()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
BinaryTreeNode* pNode2 = CreateBinaryTreeNode();
BinaryTreeNode* pNode3 = CreateBinaryTreeNode();
BinaryTreeNode* pNode4 = CreateBinaryTreeNode();
BinaryTreeNode* pNode5 = CreateBinaryTreeNode();
ConnectTreeNodes(pNode1, nullptr, pNode2);
ConnectTreeNodes(pNode2, nullptr, pNode3);
ConnectTreeNodes(pNode3, nullptr, pNode4);
ConnectTreeNodes(pNode4, nullptr, pNode5);
Test("Test5", pNode1, false);
DestroyTree(pNode1);
}
// 树中只有1个结点
void Test6()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode();
Test("Test6", pNode1, true);
DestroyTree(pNode1);
}
// 树中没有结点
void Test7()
{
Test("Test7", nullptr, true);
}
int main(int argc, char* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
Test6();
Test7();
system("pause");
return ;
}