Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 41215 | Accepted: 14915 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements
until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999,
the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
题意:求出最小交换次数。使得数组变得有序(由小到大)。 也就是求出逆序数。这个题归并排序,树状数组。线段树又能够解,能够当做练手用
使用线段树解的话,由于给出的数值非常大。所以须要离散化。一開始直接使用map果断的超时了,仅仅能想一个更简便的离散的方法,使用结构体存下一開始的值k和它初始的序号(id1),sort对k进行排序。得到新的序号(id2),通过id1直接改变给出的数组。变为id2。这样仅仅用n + logn的时间就能够离散完毕,(注意要推断反复的值。反复的值共享一个id2)。至于线段树部分就是一个模板
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL __int64
#define maxn 600000
#define lmin 1
#define rmax n
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define root lmin,rmax,1
#define now l,r,rt
#define int_now LL l,LL r,LL rt
struct node{
LL id1 , id2 ;
LL k ;
}p[maxn] ;
LL cl[maxn<<2] , a[maxn] ;
bool cmp(node a,node b)
{
return a.k < b.k ;
}
void push_up(int_now)
{
cl[rt] = cl[rt<<1] + cl[rt<<1|1] ;
}
void update(LL i,int_now)
{
if( i < l || i > r )
return ;
if( i == l && i==r )
{
cl[rt]++ ;
return ;
}
update(i,lson);
update(i,rson);
push_up(now);
return ;
}
LL query(int ll,int rr,int_now)
{
if( ll > r || rr < l )
return 0;
if( ll <= l && r <= rr )
return cl[rt] ;
return query(ll,rr,lson) + query(ll,rr,rson);
}
int main()
{
LL i , n , m , l , r , x , num ;
while(scanf("%I64d", &m) && m)
{
for(i = 0 ; i < m ; i++)
{
scanf("%I64d", &a[i]);
p[i].k = a[i] ;
p[i].id1 = i ;
}
sort(p,p+m,cmp);
int temp = -1 ;
n = 0 ;
for(i = 0 ; i < m ; i++)
{
if( p[i].k == temp )
p[i].id2 = n ;
else
{
p[i].id2 = ++n ;
temp = p[i].k ;
}
}
for(i = 0 ; i < m ; i++)
a[ p[i].id1 ] = p[i].id2 ;
memset(cl,0,sizeof(cl));
num = 0 ;
for(i = 0 ; i < m ; i++)
{
num += (i - query(1,a[i],root));
update(a[i],root);
}
printf("%I64d\n", num);
}
return 0;
}