1. 内核文件布局
首先看一下arch/x86/boot/Setup.ld文件,它定义了链接后的内核文件布局。
1: /*
2: * setup.ld
3: *
4: * Linker script for the i386 setup code
5: */
6: OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
7: OUTPUT_ARCH(i386)
8: ENTRY(_start)
9:
10: SECTIONS
11: {
12: . = 0;
13: .bstext : { *(.bstext) }
14: .bsdata : { *(.bsdata) }
15:
16: . = 497;
17: .header : { *(.header) }
18: .entrytext : { *(.entrytext) }
19: .inittext : { *(.inittext) }
20: .initdata : { *(.initdata) }
21: __end_init = .;
22:
23: .text : { *(.text) }
24: .text32 : { *(.text32) }
25:
26: . = ALIGN(16);
27: .rodata : { *(.rodata*) }
28:
29: .videocards : {
30: video_cards = .;
31: *(.videocards)
32: video_cards_end = .;
33: }
34:
35: . = ALIGN(16);
36: .data : { *(.data*) }
37:
38: .signature : {
39: setup_sig = .;
40: LONG(0x5a5aaa55)
41: }
42:
43:
44: . = ALIGN(16);
45: .bss :
46: {
47: __bss_start = .;
48: *(.bss)
49: __bss_end = .;
50: }
51: . = ALIGN(16);
52: _end = .;
53:
54: /DISCARD/ : { *(.note*) }
55:
56: /*
57: * The ASSERT() sink to . is intentional, for binutils 2.14 compatibility:
58: */
59: . = ASSERT(_end <= 0x8000, "Setup too big!");
60: . = ASSERT(hdr == 0x1f1, "The setup header has the wrong offset!");
61: /* Necessary for the very-old-loader check to work... */
62: . = ASSERT(__end_init <= 5*512, "init sections too big!");
63:
64: }
2. Boot Sector启动扇区
通过该文件,可以看到,.bstext以及.bsdata段都定义在第一个sector中,实际上bs就是boot sector的简称。
在通过Grub、Lilo等引导程序启动内核时,不会将控制权交给boot sector中的代码来执行,只有在没有安装任何引导程序,并且将内核映像写到了软盘中时,才会从boot sector引导。
因此,boot sector的存在,只是为了兼容Linux诞生时的做法,即从软盘启动,就像PE文件头部都会有一段
This program cannot be run in DOS mode.
的提示一样。
我们看一下Boot Sector里面存放了什么内容:
.bstext section
1: .section ".bstext", "ax"
2:
3: .global bootsect_start
4: sect_start:
5:
6: # Normalize the start address
7: ljmp $BOOTSEG, $start2
8:
9: t2:
10: movw %cs, %ax
11: movw %ax, %ds
12: movw %ax, %es
13: movw %ax, %ss
14: xorw %sp, %sp
15: sti
16: cld
17:
18: movw $bugger_off_msg, %si
19:
20: loop:
21: lodsb
22: andb %al, %al
23: jz bs_die
24: movb $0xe, %ah
25: movw $7, %bx
26: int $0x10
27: jmp msg_loop
28:
29: ie:
30: # Allow the user to press a key, then reboot
31: xorw %ax, %ax
32: int $0x16
33: int $0x19
34:
35: # int 0x19 should never return. In case it does anyway,
36: # invoke the BIOS reset code...
37: ljmp $0xf000,$0xfff0
.bsdata section
1: .section ".bsdata", "a"
2: er_off_msg:
3: .ascii "Direct booting from floppy is no longer supported.\r\n"
4: .ascii "Please use a boot loader program instead.\r\n"
5: .ascii "\n"
6: .ascii "Remove disk and press any key to reboot . . .\r\n"
7: .byte 0
8:
9:
10: # Kernel attributes; used by setup. This is part 1 of the
11: # header, from the old boot sector.
.header section的一部分
1: .section ".header", "a"
2: .globl hdr
3:
4: p_sects: .byte 0 /* Filled in by build.c */
5: _flags: .word ROOT_RDONLY
6: ize: .long 0 /* Filled in by build.c */
7: size: .word 0 /* Obsolete */
8: mode: .word SVGA_MODE
9: _dev: .word 0 /* Filled in by build.c */
10: _flag: .word 0xAA55
11:
12: # offset 512, entry point
基本上没有什么有价值的信息。
在LXR上面的最新代码(http://lxr.oss.org.cn/source/arch/x86/boot/header.S)中,有
45 #ifdef CONFIG_EFI_STUB
46 # "MZ", MS-DOS header
47 .byte 0x4d
48 .byte 0x5a
49 #endif
这是为了支持UEFI启动,UEFI Image的头部是用PE32+格式定义的,因此有“MZ”的Signature。
2.1.1 UEFI Images
UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file contains an
image header that defines the encoding of the executable image.
UEFI uses a subset of the PE32+ image format with a modified header signature. The modification
to the signature value in the PE32+ image is done to distinguish UEFI images from normal PE32
executables. The “+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard
PE32 format.参考:http://www.uefi.org/sites/default/files/resources/UEFI_2.4_0.pdf
3. Bootloader会首先将执行权利交给内核的哪段代码?
我们看常用的Grub:
3.4 BIOS installation
MBR
The partition table format traditionally used on PC BIOS platforms is called the Master
Boot Record (MBR) format; this is the format that allows up to four primary partitions
and additional logical partitions. With this partition table format, there are two ways to
install GRUB: it can be embedded in the area between the MBR and the first partition
(called by various names, such as the "boot track", "MBR gap", or "embedding area", and
which is usually at least 31 KiB), or the core image can be installed in a file system and a
list of the blocks that make it up can be stored in the first sector of that partition.
Each of these has different problems. There is no way to reserve space in the embedding area with complete safety, and some proprietary software is known to use it to
make it difficult for users to work around licensing restrictions; and systems are sometimes
partitioned without leaving enough space before the first partition. On the other hand,
installing to a filesystem means that GRUB is vulnerable to its blocks being moved around
by filesystem features such as tail packing, or even by aggressive fsck implementations, so
this approach is quite fragile; and this approach can only be used if the ‘/boot’ filesystem
is on the same disk that the BIOS boots from, so that GRUB does not have to rely on
guessing BIOS drive numbers.
The GRUB development team generally recommends embedding GRUB before the
first partition, unless you have special requirements. You must ensure that the first partition
starts at least 31 KiB (63 sectors) from the start of the disk; on modern disks, it is often a
performance advantage to align partitions on larger boundaries anyway, so the first partition
might start 1 MiB from the start of the disk.
当计算机加电自检后,ROM BIOS加载MBR(主引导扇区,即硬盘第一扇区)中的代码到内存中,这个扇区一共512字节,前446字节内容存放grub(bootloader)的关键引导程序,接着64字节放置硬盘分区表DPT(Disk Partition Table),一共四可以有四个主分区,占64个字节,这也是为什么主分区最多只有四个的原因,最后2个字节是固定的标志0x55AA。当BIOS把引导程序加载到内存后就把控制权交给grub,而后grub的剩余代码将完成其它代码的加载和搬移以及文件系统初始化查找等工作,最终加载内核映像文件,从而把控制权交给真正的内核运行。
还有几篇关于Linux引导程序的介绍性文章:
http://www.ibm.com/developerworks/cn/linux/l-lpic1-v3-102-2/
http://www.ibm.com/developerworks/cn/linux/l-linuxboot/
How to boot an OS directly with GRUB
Multiboot (see Multiboot Specification) is the native format supported by GRUB. For the sake of convenience, there are also support for Linux, FreeBSD, NetBSD and OpenBSD. If you want to boot other operating systems, you will have to chain-load them (see Chain-loading).
Generally, GRUB can boot any Multiboot-compliant OS in the following steps:
- Set GRUB's root device to the drive where the OS images are stored by the command
root
(see root).- Load the kernel image by the command
kernel
(see kernel).- If you need modules, load them with the command
module
(see module) ormodulenounzip
(see modulenounzip).- Run the command
boot
(see boot).Linux, FreeBSD, NetBSD and OpenBSD can be booted in a similar manner. You can load a kernel image by the command
kernel
and then run the commandboot
. If the kernel requires some parameters, just append the parameters tokernel
, after the file name of the kernel. Also, please refer to OS-specific notes, for the information on your OS-specific issues.
都没有直接回答这个问题。
查看Grub的源码:grub_linux_boot函数
1: static grub_err_t
2: grub_linux_boot (void)
3: {
4: int e820_num;
5: grub_err_t err = 0;
6: const char *modevar;
7: char *tmp;
8: struct grub_relocator32_state state;
9: void *real_mode_mem;
10: grub_addr_t real_mode_target = 0;
11: grub_size_t real_size, mmap_size;
12: grub_size_t cl_offset;
13:
14: #ifdef GRUB_MACHINE_IEEE1275
15: {
16: const char *bootpath;
17: grub_ssize_t len;
18:
19: bootpath = grub_env_get ("root");
20: if (bootpath)
21: grub_ieee1275_set_property (grub_ieee1275_chosen,
22: "bootpath", bootpath,
23: grub_strlen (bootpath) + 1,
24: &len);
25: linux_params.ofw_signature = GRUB_LINUX_OFW_SIGNATURE;
26: linux_params.ofw_num_items = 1;
27: linux_params.ofw_cif_handler = (grub_uint32_t) grub_ieee1275_entry_fn;
28: linux_params.ofw_idt = 0;
29: }
30: #endif
31:
32: modevar = grub_env_get ("gfxpayload");
33:
34: /* Now all graphical modes are acceptable.
35: May change in future if we have modes without framebuffer. */
36: if (modevar && *modevar != 0)
37: {
38: tmp = grub_xasprintf ("%s;" DEFAULT_VIDEO_MODE, modevar);
39: if (! tmp)
40: return grub_errno;
41: #if ACCEPTS_PURE_TEXT
42: err = grub_video_set_mode (tmp, 0, 0);
43: #else
44: err = grub_video_set_mode (tmp, GRUB_VIDEO_MODE_TYPE_PURE_TEXT, 0);
45: #endif
46: grub_free (tmp);
47: }
48: else
49: {
50: #if ACCEPTS_PURE_TEXT
51: err = grub_video_set_mode (DEFAULT_VIDEO_MODE, 0, 0);
52: #else
53: err = grub_video_set_mode (DEFAULT_VIDEO_MODE,
54: GRUB_VIDEO_MODE_TYPE_PURE_TEXT, 0);
55: #endif
56: }
57:
58: if (err)
59: {
60: grub_print_error ();
61: grub_puts_ (N_("Booting in blind mode"));
62: grub_errno = GRUB_ERR_NONE;
63: }
64:
65: if (grub_linux_setup_video (&linux_params))
66: {
67: #if defined (GRUB_MACHINE_PCBIOS) || defined (GRUB_MACHINE_COREBOOT) || defined (GRUB_MACHINE_QEMU)
68: linux_params.have_vga = GRUB_VIDEO_LINUX_TYPE_TEXT;
69: linux_params.video_mode = 0x3;
70: #else
71: linux_params.have_vga = 0;
72: linux_params.video_mode = 0;
73: linux_params.video_width = 0;
74: linux_params.video_height = 0;
75: #endif
76: }
77:
78:
79: #ifndef GRUB_MACHINE_IEEE1275
80: if (linux_params.have_vga == GRUB_VIDEO_LINUX_TYPE_TEXT)
81: #endif
82: {
83: grub_term_output_t term;
84: int found = 0;
85: FOR_ACTIVE_TERM_OUTPUTS(term)
86: if (grub_strcmp (term->name, "vga_text") == 0
87: || grub_strcmp (term->name, "console") == 0
88: || grub_strcmp (term->name, "ofconsole") == 0)
89: {
90: grub_uint16_t pos = grub_term_getxy (term);
91: linux_params.video_cursor_x = pos >> 8;
92: linux_params.video_cursor_y = pos & 0xff;
93: linux_params.video_width = grub_term_width (term);
94: linux_params.video_height = grub_term_height (term);
95: found = 1;
96: break;
97: }
98: if (!found)
99: {
100: linux_params.video_cursor_x = 0;
101: linux_params.video_cursor_y = 0;
102: linux_params.video_width = 80;
103: linux_params.video_height = 25;
104: }
105: }
106:
107: mmap_size = find_mmap_size ();
108: /* Make sure that each size is aligned to a page boundary. */
109: cl_offset = ALIGN_UP (mmap_size + sizeof (linux_params), 4096);
110: if (cl_offset < ((grub_size_t) linux_params.setup_sects << GRUB_DISK_SECTOR_BITS))
111: cl_offset = ALIGN_UP ((grub_size_t) (linux_params.setup_sects
112: << GRUB_DISK_SECTOR_BITS), 4096);
113: real_size = ALIGN_UP (cl_offset + maximal_cmdline_size, 4096);
114:
115: #ifdef GRUB_MACHINE_EFI
116: efi_mmap_size = find_efi_mmap_size ();
117: if (efi_mmap_size == 0)
118: return grub_errno;
119: #endif
120:
121: grub_dprintf ("linux", "real_size = %x, mmap_size = %x\n",
122: (unsigned) real_size, (unsigned) mmap_size);
123:
124: auto int NESTED_FUNC_ATTR hook (grub_uint64_t, grub_uint64_t,
125: grub_memory_type_t);
126: int NESTED_FUNC_ATTR hook (grub_uint64_t addr, grub_uint64_t size,
127: grub_memory_type_t type)
128: {
129: /* We must put real mode code in the traditional space. */
130: if (type != GRUB_MEMORY_AVAILABLE || addr > 0x90000)
131: return 0;
132:
133: if (addr + size < 0x10000)
134: return 0;
135:
136: if (addr < 0x10000)
137: {
138: size += addr - 0x10000;
139: addr = 0x10000;
140: }
141:
142: if (addr + size > 0x90000)
143: size = 0x90000 - addr;
144:
145: if (real_size + efi_mmap_size > size)
146: return 0;
147:
148: grub_dprintf ("linux", "addr = %lx, size = %x, need_size = %x\n",
149: (unsigned long) addr,
150: (unsigned) size,
151: (unsigned) (real_size + efi_mmap_size));
152: real_mode_target = ((addr + size) - (real_size + efi_mmap_size));
153: return 1;
154: }
155: #ifdef GRUB_MACHINE_EFI
156: grub_efi_mmap_iterate (hook, 1);
157: if (! real_mode_target)
158: grub_efi_mmap_iterate (hook, 0);
159: #else
160: grub_mmap_iterate (hook);
161: #endif
162: grub_dprintf ("linux", "real_mode_target = %lx, real_size = %x, efi_mmap_size = %x\n",
163: (unsigned long) real_mode_target,
164: (unsigned) real_size,
165: (unsigned) efi_mmap_size);
166:
167: if (! real_mode_target)
168: return grub_error (GRUB_ERR_OUT_OF_MEMORY, "cannot allocate real mode pages");
169:
170: {
171: grub_relocator_chunk_t ch;
172: err = grub_relocator_alloc_chunk_addr (relocator, &ch,
173: real_mode_target,
174: (real_size + efi_mmap_size));
175: if (err)
176: return err;
177: real_mode_mem = get_virtual_current_address (ch);
178: }
179: efi_mmap_buf = (grub_uint8_t *) real_mode_mem + real_size;
180:
181: grub_dprintf ("linux", "real_mode_mem = %lx\n",
182: (unsigned long) real_mode_mem);
183:
184: struct linux_kernel_params *params;
185:
186: params = real_mode_mem;
187:
188: *params = linux_params;
189: params->cmd_line_ptr = real_mode_target + cl_offset;
190: grub_memcpy ((char *) params + cl_offset, linux_cmdline,
191: maximal_cmdline_size);
192:
193: grub_dprintf ("linux", "code32_start = %x\n",
194: (unsigned) params->code32_start);
195:
196: auto int NESTED_FUNC_ATTR hook_fill (grub_uint64_t, grub_uint64_t,
197: grub_memory_type_t);
198: int NESTED_FUNC_ATTR hook_fill (grub_uint64_t addr, grub_uint64_t size,
199: grub_memory_type_t type)
200: {
201: grub_uint32_t e820_type;
202: switch (type)
203: {
204: case GRUB_MEMORY_AVAILABLE:
205: e820_type = GRUB_E820_RAM;
206: break;
207:
208: case GRUB_MEMORY_ACPI:
209: e820_type = GRUB_E820_ACPI;
210: break;
211:
212: case GRUB_MEMORY_NVS:
213: e820_type = GRUB_E820_NVS;
214: break;
215:
216: case GRUB_MEMORY_BADRAM:
217: e820_type = GRUB_E820_BADRAM;
218: break;
219:
220: default:
221: e820_type = GRUB_E820_RESERVED;
222: }
223: if (grub_e820_add_region (params->e820_map, &e820_num,
224: addr, size, e820_type))
225: return 1;
226:
227: return 0;
228: }
229:
230: e820_num = 0;
231: if (grub_mmap_iterate (hook_fill))
232: return grub_errno;
233: params->mmap_size = e820_num;
234:
235: #ifdef GRUB_MACHINE_EFI
236: {
237: grub_efi_uintn_t efi_desc_size;
238: grub_size_t efi_mmap_target;
239: grub_efi_uint32_t efi_desc_version;
240: err = grub_efi_finish_boot_services (&efi_mmap_size, efi_mmap_buf, NULL,
241: &efi_desc_size, &efi_desc_version);
242: if (err)
243: return err;
244:
245: /* Note that no boot services are available from here. */
246: efi_mmap_target = real_mode_target
247: + ((grub_uint8_t *) efi_mmap_buf - (grub_uint8_t *) real_mode_mem);
248: /* Pass EFI parameters. */
249: if (grub_le_to_cpu16 (params->version) >= 0x0208)
250: {
251: params->v0208.efi_mem_desc_size = efi_desc_size;
252: params->v0208.efi_mem_desc_version = efi_desc_version;
253: params->v0208.efi_mmap = efi_mmap_target;
254: params->v0208.efi_mmap_size = efi_mmap_size;
255:
256: #ifdef __x86_64__
257: params->v0208.efi_mmap_hi = (efi_mmap_target >> 32);
258: #endif
259: }
260: else if (grub_le_to_cpu16 (params->version) >= 0x0206)
261: {
262: params->v0206.efi_mem_desc_size = efi_desc_size;
263: params->v0206.efi_mem_desc_version = efi_desc_version;
264: params->v0206.efi_mmap = efi_mmap_target;
265: params->v0206.efi_mmap_size = efi_mmap_size;
266: }
267: else if (grub_le_to_cpu16 (params->version) >= 0x0204)
268: {
269: params->v0204.efi_mem_desc_size = efi_desc_size;
270: params->v0204.efi_mem_desc_version = efi_desc_version;
271: params->v0204.efi_mmap = efi_mmap_target;
272: params->v0204.efi_mmap_size = efi_mmap_size;
273: }
274: }
275: #endif
276:
277: /* FIXME. */
278: /* asm volatile ("lidt %0" : : "m" (idt_desc)); */
279: state.ebp = state.edi = state.ebx = 0;
280: state.esi = real_mode_target;
281: state.esp = real_mode_target;
282: state.eip = params->code32_start;
283: return grub_relocator32_boot (relocator, state, 0);
284: }
也没有明确的暗示。
关于linux_header的定义
1: struct linux_hdrs {
2: /* All HdrS versions support these fields. */
3: unsigned int start_insns[2];
4: char magic[4]; /* "HdrS" */
5: unsigned int linux_kernel_version; /* LINUX_VERSION_CODE */
6: unsigned short hdrs_version;
7: unsigned short root_flags;
8: unsigned short root_dev;
9: unsigned short ram_flags;
10: unsigned int __deprecated_ramdisk_image;
11: unsigned int ramdisk_size;
12:
13: /* HdrS versions 0x0201 and higher only */
14: char *reboot_command;
15:
16: /* HdrS versions 0x0202 and higher only */
17: struct linux_bootstr_info *bootstr_info;
18:
19: /* HdrS versions 0x0301 and higher only */
20: unsigned long ramdisk_image;
21: };
可以看到这个结构与header.S中的下面部分是对应的
1: 272 # offset 512, entry point
2: 273
3: 274 .globl _start
4: 275 _start:
5: 276 # Explicitly enter this as bytes, or the assembler
6: 277 # tries to generate a 3-byte jump here, which causes
7: 278 # everything else to push off to the wrong offset.
8: 279 .byte 0xeb # short (2-byte) jump
9: 280 .byte start_of_setup-1f
10: 281 1:
11: 282
12: 283 # Part 2 of the header, from the old setup.S
13: 284
14: 285 .ascii "HdrS" # header signature
15: 286 .word 0x020c # header version number (>= 0x0105)
16: 287 # or else old loadlin-1.5 will fail)
17: 288 .globl realmode_swtch
18: 289 realmode_swtch: .word 0, 0 # default_switch, SETUPSEG
19: 290 start_sys_seg: .word SYSSEG # obsolete and meaningless, but just
20: 291 # in case something decided to "use" it
21: 292 .word kernel_version-512 # pointing to kernel version string
22: 293 # above section of header is compatible
23: 294 # with loadlin-1.5 (header v1.5). Don't
24: 295 # change it.
25: 296
26: 297 type_of_loader: .byte 0 # 0 means ancient bootloader, newer
27: 298 # bootloaders know to change this.
28: 299 # See Documentation/x86/boot.txt for
29: 300 # assigned ids
30: 301
31: 302 # flags, unused bits must be zero (RFU) bit within loadflags
32: 303 loadflags:
33: 304 .byte LOADED_HIGH # The kernel is to be loaded high
34: 305
35: 306 setup_move_size: .word 0x8000 # size to move, when setup is not
36: 307 # loaded at 0x90000. We will move setup
37: 308 # to 0x90000 then just before jumping
38: 309 # into the kernel. However, only the
39: 310 # loader knows how much data behind
40: 311 # us also needs to be loaded.
41: 312
42: 313 code32_start: # here loaders can put a different
43: 314 # start address for 32-bit code.
44: 315 .long 0x100000 # 0x100000 = default for big kernel
45: 316
46: 317 ramdisk_image: .long 0 # address of loaded ramdisk image
47: 318 # Here the loader puts the 32-bit
48: 319 # address where it loaded the image.
49: 320 # This only will be read by the kernel.
上面的结构是64位,我们看一下32位的情况
1: /* For the Linux/i386 boot protocol version 2.10. */
2: struct linux_kernel_header
3: {
4: grub_uint8_t code1[0x0020];
5: grub_uint16_t cl_magic; /* Magic number 0xA33F */
6: grub_uint16_t cl_offset; /* The offset of command line */
7: grub_uint8_t code2[0x01F1 - 0x0020 - 2 - 2];
8: grub_uint8_t setup_sects; /* The size of the setup in sectors */
9: grub_uint16_t root_flags; /* If the root is mounted readonly */
10: grub_uint16_t syssize; /* obsolete */
11: grub_uint16_t swap_dev; /* obsolete */
12: grub_uint16_t ram_size; /* obsolete */
13: grub_uint16_t vid_mode; /* Video mode control */
14: grub_uint16_t root_dev; /* Default root device number */
15: grub_uint16_t boot_flag; /* 0xAA55 magic number */
16: grub_uint16_t jump; /* Jump instruction */
17: grub_uint32_t header; /* Magic signature "HdrS" */
18: grub_uint16_t version; /* Boot protocol version supported */
19: grub_uint32_t realmode_swtch; /* Boot loader hook */
20: grub_uint16_t start_sys; /* The load-low segment (obsolete) */
21: grub_uint16_t kernel_version; /* Points to kernel version string */
22: grub_uint8_t type_of_loader; /* Boot loader identifier */
23: #define LINUX_LOADER_ID_LILO 0x0
24: #define LINUX_LOADER_ID_LOADLIN 0x1
25: #define LINUX_LOADER_ID_BOOTSECT 0x2
26: #define LINUX_LOADER_ID_SYSLINUX 0x3
27: #define LINUX_LOADER_ID_ETHERBOOT 0x4
28: #define LINUX_LOADER_ID_ELILO 0x5
29: #define LINUX_LOADER_ID_GRUB 0x7
30: #define LINUX_LOADER_ID_UBOOT 0x8
31: #define LINUX_LOADER_ID_XEN 0x9
32: #define LINUX_LOADER_ID_GUJIN 0xa
33: #define LINUX_LOADER_ID_QEMU 0xb
34: grub_uint8_t loadflags; /* Boot protocol option flags */
35: grub_uint16_t setup_move_size; /* Move to high memory size */
36: grub_uint32_t code32_start; /* Boot loader hook */
37: grub_uint32_t ramdisk_image; /* initrd load address */
38: grub_uint32_t ramdisk_size; /* initrd size */
39: grub_uint32_t bootsect_kludge; /* obsolete */
40: grub_uint16_t heap_end_ptr; /* Free memory after setup end */
41: grub_uint16_t pad1; /* Unused */
42: grub_uint32_t cmd_line_ptr; /* Points to the kernel command line */
43: grub_uint32_t initrd_addr_max; /* Highest address for initrd */
44: grub_uint32_t kernel_alignment;
45: grub_uint8_t relocatable;
46: grub_uint8_t min_alignment;
47: grub_uint8_t pad[2];
48: grub_uint32_t cmdline_size;
49: grub_uint32_t hardware_subarch;
50: grub_uint64_t hardware_subarch_data;
51: grub_uint32_t payload_offset;
52: grub_uint32_t payload_length;
53: grub_uint64_t setup_data;
54: grub_uint64_t pref_address;
55: grub_uint32_t init_size;
56: } __attribute__ ((packed));
这里面可以看到setup_sects是位于第二个扇区的位置,
再回顾一下
1: 255 # Kernel attributes; used by setup. This is part 1 of the
2: 256 # header, from the old boot sector.
3: 257
4: 258 .section ".header", "a"
5: 259 .globl sentinel
6: 260 sentinel: .byte 0xff, 0xff /* Used to detect broken loaders */
7: 261
8: 262 .globl hdr
9: 263 hdr:
10: 264 setup_sects: .byte 0 /* Filled in by build.c */
11: 265 root_flags: .word ROOT_RDONLY
12: 266 syssize: .long 0 /* Filled in by build.c */
13: 267 ram_size: .word 0 /* Obsolete */
14: 268 vid_mode: .word SVGA_MODE
15: 269 root_dev: .word 0 /* Filled in by build.c */
16: 270 boot_flag: .word 0xAA55
17: 271
18: 272 # offset 512, entry point
这回明确了,jump代表的就是第二个扇区头部的跳转指令的地址。
再看一下grub/loader/i386/pc/Linux.c中的代码
1: static grub_command_t cmd_linux, cmd_initrd;
2:
3: GRUB_MOD_INIT(linux16)
4: {
5: cmd_linux =
6: grub_register_command ("linux16", grub_cmd_linux,
7: 0, N_("Load Linux."));
8: cmd_initrd =
9: grub_register_command ("initrd16", grub_cmd_initrd,
10: 0, N_("Load initrd."));
11: my_mod = mod;
12: }
定义linux16命令的实现
1: static grub_err_t
2: grub_cmd_linux (grub_command_t cmd __attribute__ ((unused)),
3: int argc, char *argv[])
4: {
5: grub_file_t file = 0;
6: struct linux_kernel_header lh;
7: grub_uint8_t setup_sects;
8: grub_size_t real_size;
9: grub_ssize_t len;
10: int i;
11: char *grub_linux_prot_chunk;
12: int grub_linux_is_bzimage;
13: grub_addr_t grub_linux_prot_target;
14: grub_err_t err;
15:
16: grub_dl_ref (my_mod);
17:
18: if (argc == 0)
19: {
20: grub_error (GRUB_ERR_BAD_ARGUMENT, N_("filename expected"));
21: goto fail;
22: }
23:
24: file = grub_file_open (argv[0]);
25: if (! file)
26: goto fail;
27:
28: if (grub_file_read (file, &lh, sizeof (lh)) != sizeof (lh))
29: {
30: if (!grub_errno)
31: grub_error (GRUB_ERR_BAD_OS, N_("premature end of file %s"),
32: argv[0]);
33: goto fail;
34: }
35:
36: if (lh.boot_flag != grub_cpu_to_le16 (0xaa55))
37: {
38: grub_error (GRUB_ERR_BAD_OS, "invalid magic number");
39: goto fail;
40: }
41:
42: if (lh.setup_sects > GRUB_LINUX_MAX_SETUP_SECTS)
43: {
44: grub_error (GRUB_ERR_BAD_OS, "too many setup sectors");
45: goto fail;
46: }
47:
48: grub_linux_is_bzimage = 0;
49: setup_sects = lh.setup_sects;
50: linux_mem_size = 0;
51:
52: maximal_cmdline_size = 256;
53:
54: if (lh.header == grub_cpu_to_le32 (GRUB_LINUX_MAGIC_SIGNATURE)
55: && grub_le_to_cpu16 (lh.version) >= 0x0200)
56: {
57: grub_linux_is_bzimage = (lh.loadflags & GRUB_LINUX_FLAG_BIG_KERNEL);
58: lh.type_of_loader = GRUB_LINUX_BOOT_LOADER_TYPE;
59:
60: if (grub_le_to_cpu16 (lh.version) >= 0x0206)
61: maximal_cmdline_size = grub_le_to_cpu32 (lh.cmdline_size) + 1;
62:
63: /* Put the real mode part at as a high location as possible. */
64: grub_linux_real_target = grub_mmap_get_lower ()
65: - (GRUB_LINUX_CL_OFFSET + maximal_cmdline_size);
66: /* But it must not exceed the traditional area. */
67: if (grub_linux_real_target > GRUB_LINUX_OLD_REAL_MODE_ADDR)
68: grub_linux_real_target = GRUB_LINUX_OLD_REAL_MODE_ADDR;
69:
70: if (grub_le_to_cpu16 (lh.version) >= 0x0201)
71: {
72: lh.heap_end_ptr = grub_cpu_to_le16 (GRUB_LINUX_HEAP_END_OFFSET);
73: lh.loadflags |= GRUB_LINUX_FLAG_CAN_USE_HEAP;
74: }
75:
76: if (grub_le_to_cpu16 (lh.version) >= 0x0202)
77: lh.cmd_line_ptr = grub_linux_real_target + GRUB_LINUX_CL_OFFSET;
78: else
79: {
80: lh.cl_magic = grub_cpu_to_le16 (GRUB_LINUX_CL_MAGIC);
81: lh.cl_offset = grub_cpu_to_le16 (GRUB_LINUX_CL_OFFSET);
82: lh.setup_move_size = grub_cpu_to_le16 (GRUB_LINUX_CL_OFFSET
83: + maximal_cmdline_size);
84: }
85: }
86: else
87: {
88: /* Your kernel is quite old... */
89: lh.cl_magic = grub_cpu_to_le16 (GRUB_LINUX_CL_MAGIC);
90: lh.cl_offset = grub_cpu_to_le16 (GRUB_LINUX_CL_OFFSET);
91:
92: setup_sects = GRUB_LINUX_DEFAULT_SETUP_SECTS;
93:
94: grub_linux_real_target = GRUB_LINUX_OLD_REAL_MODE_ADDR;
95: }
96:
97: /* If SETUP_SECTS is not set, set it to the default (4). */
98: if (! setup_sects)
99: setup_sects = GRUB_LINUX_DEFAULT_SETUP_SECTS;
100:
101: real_size = setup_sects << GRUB_DISK_SECTOR_BITS;
102: grub_linux16_prot_size = grub_file_size (file)
103: - real_size - GRUB_DISK_SECTOR_SIZE;
104:
105: if (! grub_linux_is_bzimage
106: && GRUB_LINUX_ZIMAGE_ADDR + grub_linux16_prot_size
107: > grub_linux_real_target)
108: {
109: grub_error (GRUB_ERR_BAD_OS, "too big zImage (0x%x > 0x%x), use bzImage instead",
110: (char *) GRUB_LINUX_ZIMAGE_ADDR + grub_linux16_prot_size,
111: (grub_size_t) grub_linux_real_target);
112: goto fail;
113: }
114:
115: if (grub_linux_real_target + GRUB_LINUX_CL_OFFSET + maximal_cmdline_size
116: > grub_mmap_get_lower ())
117: {
118: grub_error (GRUB_ERR_OUT_OF_RANGE,
119: "too small lower memory (0x%x > 0x%x)",
120: grub_linux_real_target + GRUB_LINUX_CL_OFFSET
121: + maximal_cmdline_size,
122: (int) grub_mmap_get_lower ());
123: goto fail;
124: }
125:
126: grub_dprintf ("linux", "[Linux-%s, setup=0x%x, size=0x%x]\n",
127: grub_linux_is_bzimage ? "bzImage" : "zImage", real_size,
128: grub_linux16_prot_size);
129:
130: relocator = grub_relocator_new ();
131: if (!relocator)
132: goto fail;
133:
134: for (i = 1; i < argc; i++)
135: if (grub_memcmp (argv[i], "vga=", 4) == 0)
136: {
137: /* Video mode selection support. */
138: grub_uint16_t vid_mode;
139: char *val = argv[i] + 4;
140:
141: if (grub_strcmp (val, "normal") == 0)
142: vid_mode = GRUB_LINUX_VID_MODE_NORMAL;
143: else if (grub_strcmp (val, "ext") == 0)
144: vid_mode = GRUB_LINUX_VID_MODE_EXTENDED;
145: else if (grub_strcmp (val, "ask") == 0)
146: vid_mode = GRUB_LINUX_VID_MODE_ASK;
147: else
148: vid_mode = (grub_uint16_t) grub_strtoul (val, 0, 0);
149:
150: if (grub_errno)
151: goto fail;
152:
153: lh.vid_mode = grub_cpu_to_le16 (vid_mode);
154: }
155: else if (grub_memcmp (argv[i], "mem=", 4) == 0)
156: {
157: char *val = argv[i] + 4;
158:
159: linux_mem_size = grub_strtoul (val, &val, 0);
160:
161: if (grub_errno)
162: {
163: grub_errno = GRUB_ERR_NONE;
164: linux_mem_size = 0;
165: }
166: else
167: {
168: int shift = 0;
169:
170: switch (grub_tolower (val[0]))
171: {
172: case 'g':
173: shift += 10;
174: case 'm':
175: shift += 10;
176: case 'k':
177: shift += 10;
178: default:
179: break;
180: }
181:
182: /* Check an overflow. */
183: if (linux_mem_size > (~0UL >> shift))
184: linux_mem_size = 0;
185: else
186: linux_mem_size <<= shift;
187: }
188: }
189:
190: {
191: grub_relocator_chunk_t ch;
192: err = grub_relocator_alloc_chunk_addr (relocator, &ch,
193: grub_linux_real_target,
194: GRUB_LINUX_CL_OFFSET
195: + maximal_cmdline_size);
196: if (err)
197: return err;
198: grub_linux_real_chunk = get_virtual_current_address (ch);
199: }
200:
201: /* Put the real mode code at the temporary address. */
202: grub_memmove (grub_linux_real_chunk, &lh, sizeof (lh));
203:
204: len = real_size + GRUB_DISK_SECTOR_SIZE - sizeof (lh);
205: if (grub_file_read (file, grub_linux_real_chunk + sizeof (lh), len) != len)
206: {
207: if (!grub_errno)
208: grub_error (GRUB_ERR_BAD_OS, N_("premature end of file %s"),
209: argv[0]);
210: goto fail;
211: }
212:
213: if (lh.header != grub_cpu_to_le32 (GRUB_LINUX_MAGIC_SIGNATURE)
214: || grub_le_to_cpu16 (lh.version) < 0x0200)
215: /* Clear the heap space. */
216: grub_memset (grub_linux_real_chunk
217: + ((setup_sects + 1) << GRUB_DISK_SECTOR_BITS),
218: 0,
219: ((GRUB_LINUX_MAX_SETUP_SECTS - setup_sects - 1)
220: << GRUB_DISK_SECTOR_BITS));
221:
222: /* Create kernel command line. */
223: grub_memcpy ((char *)grub_linux_real_chunk + GRUB_LINUX_CL_OFFSET,
224: LINUX_IMAGE, sizeof (LINUX_IMAGE));
225: grub_create_loader_cmdline (argc, argv,
226: (char *)grub_linux_real_chunk
227: + GRUB_LINUX_CL_OFFSET + sizeof (LINUX_IMAGE) - 1,
228: maximal_cmdline_size
229: - (sizeof (LINUX_IMAGE) - 1));
230:
231: if (grub_linux_is_bzimage)
232: grub_linux_prot_target = GRUB_LINUX_BZIMAGE_ADDR;
233: else
234: grub_linux_prot_target = GRUB_LINUX_ZIMAGE_ADDR;
235: {
236: grub_relocator_chunk_t ch;
237: err = grub_relocator_alloc_chunk_addr (relocator, &ch,
238: grub_linux_prot_target,
239: grub_linux16_prot_size);
240: if (err)
241: return err;
242: grub_linux_prot_chunk = get_virtual_current_address (ch);
243: }
244:
245: len = grub_linux16_prot_size;
246: if (grub_file_read (file, grub_linux_prot_chunk, grub_linux16_prot_size)
247: != (grub_ssize_t) grub_linux16_prot_size && !grub_errno)
248: grub_error (GRUB_ERR_BAD_OS, N_("premature end of file %s"),
249: argv[0]);
250:
251: if (grub_errno == GRUB_ERR_NONE)
252: {
253: grub_loader_set (grub_linux16_boot, grub_linux_unload, 0);
254: loaded = 1;
255: }
256:
257: fail:
258:
259: if (file)
260: grub_file_close (file);
261:
262: if (grub_errno != GRUB_ERR_NONE)
263: {
264: grub_dl_unref (my_mod);
265: loaded = 0;
266: grub_relocator_unload (relocator);
267: }
268:
269: return grub_errno;
270: }
关键的语句:
struct linux_kernel_header lh;
……
if (grub_file_read (file, &lh, sizeof (lh)) != sizeof (lh))
……
还有解压以及代码搬移操作。
setup部分可以认为并不是Linux内核的一部分,而是为了启动内核的。setup部分大小不能超64个sector,
1: #define GRUB_LINUX_MAX_SETUP_SECTS 64
2:
3: if (lh.setup_sects > GRUB_LINUX_MAX_SETUP_SECTS)
4: {
5: grub_error (GRUB_ERR_BAD_OS, "too many setup sectors");
6: goto fail;
7: }
如果是zImage,需要使用linux16命令引导
1: if (! (lh.loadflags & GRUB_LINUX_FLAG_BIG_KERNEL))
2: {
3: grub_error (GRUB_ERR_BAD_OS, "zImage doesn't support 32-bit boot"
4: fdef GRUB_MACHINE_PCBIOS
5: " (try with `linux16')"
6: ndif
7: );
8: goto fail;
9: }
setup部分默认为4个sector大小。
1: /* If SETUP_SECTS is not set, set it to the default (4). */
2: if (! setup_sects)
3: setup_sects = GRUB_LINUX_DEFAULT_SETUP_SECTS;
real_size是setup部分的大小,prot_file_size是内核除去setup部分以及boot sector部分的大小。
1:
2: real_size = setup_sects << GRUB_DISK_SECTOR_BITS;
3: prot_file_size = grub_file_size (file) - real_size - GRUB_DISK_SECTOR_SIZE;
Linux的bzImage的目标地址为0x100000(1MB)物理内存处。
1: if (grub_le_to_cpu16 (lh.version) >= 0x020a)
2: {
3: min_align = lh.min_alignment;
4: prot_size = grub_le_to_cpu32 (lh.init_size);
5: prot_init_space = page_align (prot_size);
6: if (relocatable)
7: preffered_address = grub_le_to_cpu64 (lh.pref_address);
8: else
9: preffered_address = GRUB_LINUX_BZIMAGE_ADDR;
10: }
11: else
12: {
13: min_align = align;
14: prot_size = prot_file_size;
15: preffered_address = GRUB_LINUX_BZIMAGE_ADDR;
16: /* Usually, the compression ratio is about 50%. */
17: prot_init_space = page_align (prot_size) * 3;
18: }
调用allocate_pages函数,这是一个很重要的函数
1: if (allocate_pages (prot_size, &align,
2: min_align, relocatable,
3: preffered_address))
4: goto fail;
1: /* Allocate pages for the real mode code and the protected mode code
2: for linux as well as a memory map buffer. */
3: static grub_err_t
4: allocate_pages (grub_size_t prot_size, grub_size_t *align,
5: grub_size_t min_align, int relocatable,
6: grub_uint64_t prefered_address)
7: {
8: grub_err_t err;
9:
10: prot_size = page_align (prot_size);
11:
12: /* Initialize the memory pointers with NULL for convenience. */
13: free_pages ();
14:
15: relocator = grub_relocator_new ();
16: if (!relocator)
17: {
18: err = grub_errno;
19: goto fail;
20: }
21:
22: /* FIXME: Should request low memory from the heap when this feature is
23: implemented. */
24:
25: {
26: grub_relocator_chunk_t ch;
27: if (relocatable)
28: {
29: err = grub_relocator_alloc_chunk_align (relocator, &ch,
30: prefered_address,
31: prefered_address,
32: prot_size, 1,
33: GRUB_RELOCATOR_PREFERENCE_LOW,
34: 1);
35: for (; err && *align + 1 > min_align; (*align)--)
36: {
37: grub_errno = GRUB_ERR_NONE;
38: err = grub_relocator_alloc_chunk_align (relocator, &ch,
39: 0x1000000,
40: 0xffffffff & ~prot_size,
41: prot_size, 1 << *align,
42: GRUB_RELOCATOR_PREFERENCE_LOW,
43: 1);
44: }
45: if (err)
46: goto fail;
47: }
48: else
49: err = grub_relocator_alloc_chunk_addr (relocator, &ch,
50: prefered_address,
51: prot_size);
52: if (err)
53: goto fail;
54: prot_mode_mem = get_virtual_current_address (ch);
55: prot_mode_target = get_physical_target_address (ch);
56: }
57:
58: grub_dprintf ("linux", "prot_mode_mem = %lx, prot_mode_target = %lx, prot_size = %x\n",
59: (unsigned long) prot_mode_mem, (unsigned long) prot_mode_target,
60: (unsigned) prot_size);
61: return GRUB_ERR_NONE;
62:
63: fail:
64: free_pages ();
65: return err;
66: }
if (err)
goto fail;
}
else
err = grub_relocator_alloc_chunk_addr (relocator, &ch,
prefered_address,
prot_size);
if (err)
goto fail;
prot_mode_mem = get_virtual_current_address (ch);
prot_mode_target = get_physical_target_address (ch);
进行重定位操作,并且分配物理内存页。
(Grub部分还需要更多的Research.)
当内核映像被加载到内存中,并且阶段 2 的引导加载程序释放控制权之后,内核阶段就开始了。内核映像并不是一个可执行的内核,而是一个压缩过的内核映像。通常它是一个 zImage(压缩映像,小于 512KB)或一个 bzImage(较大的压缩映像,大于 512KB),它是提前使用 zlib 进行压缩过的。在这个内核映像前面是一个例程,它实现少量硬件设置,并对内核映像中包含的内核进行解压,然后将其放入高端内存中,如果有初始 RAM 磁盘映像,就会将它移动到内存中,并标明以后使用。然后该例程会调用内核,并开始启动内核引导的过程。
当 bzImage(用于 i386 映像)被调用时,我们从
./arch/i386/boot/head.S
的start
汇编例程开始执行(主要流程图请参看图 3)。这个例程会执行一些基本的硬件设置,并调用./arch/i386/boot/compressed/head.S
中的startup_32
例程。此例程会设置一个基本的环境(堆栈等),并清除 Block Started by Symbol(BSS)。然后调用一个叫做decompress_kernel
的 C 函数(在./arch/i386/boot/compressed/misc.c
中)来解压内核。当内核被解压到内存中之后,就可以调用它了。这是另外一个startup_32
函数,但是这个函数在./arch/i386/kernel/head.S
中。在这个新的
startup_32
函数(也称为清除程序或进程 0)中,会对页表进行初始化,并启用内存分页功能。然后会为任何可选的浮点单元(FPU)检测 CPU 的类型,并将其存储起来供以后使用。然后调用start_kernel
函数(在init/main.c
中),它会将您带入与体系结构无关的 Linux 内核部分。实际上,这就是 Linux 内核的main
函数。
所有这些尝试都失败后,我们先假设
因此Grub会将控制权交给Setup Sector的起始位置,即内核映像中的第二个扇区。
即跳转到_start标号处执行:
1: .globl _start
2: rt:
3: # Explicitly enter this as bytes, or the assembler
4: # tries to generate a 3-byte jump here, which causes
5: # everything else to push off to the wrong offset.
6: .byte 0xeb # short (2-byte) jump
7: .byte start_of_setup-1f
8: 1:
9:
10: # Part 2 of the header, from the old setup.S
4. setup程序
1: .section ".entrytext", "ax"
2: start_of_setup:
3: #ifdef SAFE_RESET_DISK_CONTROLLER
4: # Reset the disk controller.
5: movw $0x0000, %ax # Reset disk controller
6: movb $0x80, %dl # All disks
7: int $0x13
8: #endif
9:
10: # Force %es = %ds
11: movw %ds, %ax
12: movw %ax, %es
13: cld
14:
15: # Apparently some ancient versions of LILO invoked the kernel with %ss != %ds,
16: # which happened to work by accident for the old code. Recalculate the stack
17: # pointer if %ss is invalid. Otherwise leave it alone, LOADLIN sets up the
18: # stack behind its own code, so we cant blindly put it directly past the heap.
19:
20: movw %ss, %dx
21: cmpw %ax, %dx # %ds == %ss?
22: movw %sp, %dx
23: je 2f # -> assume %sp is reasonably set
24:
25: # Invalid %ss, make up a new stack
26: movw $_end, %dx
27: testb $CAN_USE_HEAP, loadflags
28: jz 1f
29: movw heap_end_ptr, %dx
30: 1: addw $STACK_SIZE, %dx
31: jnc 2f
32: xorw %dx, %dx # Prevent wraparound
33:
34: 2: # Now %dx should point to the end of our stack space
35: andw $~3, %dx # dword align (might as well...)
36: jnz 3f
37: movw $0xfffc, %dx # Make sure we are not zero
38: 3: movw %ax, %ss
39: movzwl %dx, %esp # Clear upper half of %esp
40: sti # Now we should have a working stack
41:
42: # We will have entered with %cs = %ds+0x20, normalize %cs so
43: # it is on par with the other segments.
44: pushw %ds
45: pushw $6f
46: lretw
47: 6:
48:
49: # Check signature at end of setup
50: cmpl $0x5a5aaa55, setup_sig
51: jne setup_bad
52:
53: # Zero the bss
54: movw $__bss_start, %di
55: movw $_end+3, %cx
56: xorl %eax, %eax
57: subw %di, %cx
58: shrw $2, %cx
59: rep; stosl
60:
61: # Jump to C code (should not return)
62: calll main
63:
64: # Setup corrupt somehow...
65: setup_bad:
66: movl $setup_corrupt, %eax
67: calll puts
68: # Fall through...
69:
70: .globl die
71: .type die, @function
72: die:
73: hlt
74: jmp die
75:
76: .size die, .-die
77:
78: .section ".initdata", "a"
79: setup_corrupt:
80: .byte 7
81: .string "No setup signature found...\n"
最重要的语句:
# Jump to C code (should not return)
calll main
下面就跳到了C语言部分了。