注意:Oa其实在OK的延长线上,上图只是为了好看才把Oa和OK分开了
算法需求如图所示:
已知空间向量OA和空间向量OB
我想算出OA向OB按某角度或者某时间移动
变成空间向量Oa的算法
先说废话:我一开始尝试了:空间平面、矩阵、四元素等等方式都能算出来,但是很繁琐。
然后发现,其实向量之间的算法完全能满足需求:
1.先求出向量AB
2.然后按某时间,某角度或者某百分比 乘以AB向量得到向量:AK
3.OA+AK=OK
4.将OK的向量归一化,乘以OA的模(长度)得到Oa
注意:Oa其实在OK的延长线上,上图只是为了好看才把Oa和OK分开了
osg::Vec3d rotateVector(double time, osg::Vec3d OA, osg::Vec3d OB)
{
//http://www.cnblogs.com/lyggqm/p/8820676.html
osg::Vec3d _Oa;
osg::Vec3d AB = OB - OA;
if (time >=0.0 && time <= 1.0)
AB *= time;//AK = AB*time
else
return OA;
osg::Vec3d OK = OA + AB;
OK.normalize();//因为OA,OB传入的已经是normalize的所以OK就是Oa了
_Oa = OK;
return _Oa;
}
算法结束
由此算法,再给出一个osg空间四元素q1转到空间四元素q2的函数吧:(与之前算法无关)
/// Spherical Linear Interpolation
/// As t goes from 0 to 1, the Quat object goes from "from" to "to"
/// Reference: Shoemake at SIGGRAPH 89
/// See also
/// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
void Quat::slerp( value_type t, const Quat& from, const Quat& to )
{
const double epsilon = 0.00001;
double omega, cosomega, sinomega, scale_from, scale_to ; osg::Quat quatTo(to);
// this is a dot product cosomega = from.asVec4() * to.asVec4(); if ( cosomega <0.0 )
{
cosomega = -cosomega;
quatTo = -to;
} if( (1.0 - cosomega) > epsilon )
{
omega= acos(cosomega) ; // 0 <= omega <= Pi (see man acos)
sinomega = sin(omega) ; // this sinomega should always be +ve so
// could try sinomega=sqrt(1-cosomega*cosomega) to avoid a sin()?
scale_from = sin((1.0-t)*omega)/sinomega ;
scale_to = sin(t*omega)/sinomega ;
}
else
{
/* --------------------------------------------------
The ends of the vectors are very close
we can use simple linear interpolation - no need
to worry about the "spherical" interpolation
-------------------------------------------------- */
scale_from = 1.0 - t ;
scale_to = t ;
} *this = (from*scale_from) + (quatTo*scale_to); // so that we get a Vec4
} //*************以下是用法*******************/ osg::Quat q1,q2;
double time;//time是0到1值
//.......赋值不表 q1.slerp(time, q1, q2);//q1按time百分比转到q2