本文实例讲述了Python实现的朴素贝叶斯分类器。分享给大家供大家参考,具体如下:
因工作中需要,自己写了一个朴素贝叶斯分类器。
对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码
因工作中需要,自己写了一个朴素贝叶斯分类器。对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
class NBClassify( object ):
def __init__( self , fillNa = 1 ):
self .fillNa = 1
pass
def train( self , trainSet):
# 计算每种类别的概率
# 保存所有tag的所有种类,及它们出现的频次
dictTag = {}
for subTuple in trainSet:
dictTag[ str (subTuple[ 1 ])] = 1 if str (subTuple[ 1 ]) not in dictTag.keys() else dictTag[ str (subTuple[ 1 ])] + 1
# 保存每个tag本身的概率
tagProbablity = {}
totalFreq = sum ([value for value in dictTag.values()])
for key, value in dictTag.items():
tagProbablity[key] = value / totalFreq
# print(tagProbablity)
self .tagProbablity = tagProbablity
##############################################################################
# 计算特征的条件概率
# 保存特征属性基本信息{特征1:{值1:出现5次, 值2:出现1次}, 特征2:{值1:出现1次, 值2:出现5次}}
dictFeaturesBase = {}
for subTuple in trainSet:
for key, value in subTuple[ 0 ].items():
if key not in dictFeaturesBase.keys():
dictFeaturesBase[key] = {value: 1 }
else :
if value not in dictFeaturesBase[key].keys():
dictFeaturesBase[key][value] = 1
else :
dictFeaturesBase[key][value] + = 1
# dictFeaturesBase = {
# '职业': {'农夫': 1, '教师': 2, '建筑工人': 2, '护士': 1},
# '症状': {'打喷嚏': 3, '头痛': 3}
# }
dictFeatures = {}.fromkeys([key for key in dictTag])
for key in dictFeatures.keys():
dictFeatures[key] = {}.fromkeys([key for key in dictFeaturesBase])
for key, value in dictFeatures.items():
for subkey in value.keys():
value[subkey] = {}.fromkeys([x for x in dictFeaturesBase[subkey].keys()])
# dictFeatures = {
# '感冒 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}},
# '脑震荡': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}},
# '过敏 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}}
# }
# initialise dictFeatures
for subTuple in trainSet:
for key, value in subTuple[ 0 ].items():
dictFeatures[subTuple[ 1 ]][key][value] = 1 if dictFeatures[subTuple[ 1 ]][key][value] = = None else dictFeatures[subTuple[ 1 ]][key][value] + 1
# print(dictFeatures)
# 将驯良样本中没有的项目,由None改为一个非常小的数值,表示其概率极小而并非是零
for tag, featuresDict in dictFeatures.items():
for featureName, fetureValueDict in featuresDict.items():
for featureKey, featureValues in fetureValueDict.items():
if featureValues = = None :
fetureValueDict[featureKey] = 1
# 由特征频率计算特征的条件概率P(feature|tag)
for tag, featuresDict in dictFeatures.items():
for featureName, fetureValueDict in featuresDict.items():
totalCount = sum ([x for x in fetureValueDict.values() if x ! = None ])
for featureKey, featureValues in fetureValueDict.items():
fetureValueDict[featureKey] = featureValues / totalCount if featureValues ! = None else None
self .featuresProbablity = dictFeatures
##############################################################################
def classify( self , featureDict):
resultDict = {}
# 计算每个tag的条件概率
for key, value in self .tagProbablity.items():
iNumList = []
for f, v in featureDict.items():
if self .featuresProbablity[key][f][v]:
iNumList.append( self .featuresProbablity[key][f][v])
conditionPr = 1
for iNum in iNumList:
conditionPr * = iNum
resultDict[key] = value * conditionPr
# 对比每个tag的条件概率的大小
resultList = sorted (resultDict.items(), key = lambda x:x[ 1 ], reverse = True )
return resultList[ 0 ][ 0 ]
if __name__ = = '__main__' :
trainSet = [
({ "症状" : "打喷嚏" , "职业" : "护士" }, "感冒 " ),
({ "症状" : "打喷嚏" , "职业" : "农夫" }, "过敏 " ),
({ "症状" : "头痛" , "职业" : "建筑工人" }, "脑震荡" ),
({ "症状" : "头痛" , "职业" : "建筑工人" }, "感冒 " ),
({ "症状" : "打喷嚏" , "职业" : "教师" }, "感冒 " ),
({ "症状" : "头痛" , "职业" : "教师" }, "脑震荡" ),
]
monitor = NBClassify()
# trainSet is something like that [(featureDict, tag), ]
monitor.train(trainSet)
# 打喷嚏的建筑工人
# 请问他患上感冒的概率有多大?
result = monitor.classify({ "症状" : "打喷嚏" , "职业" : "建筑工人" })
print (result)
|
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/miangangzhen/article/details/50544726