信号及信号来源
信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。
信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。
信号事件的发生有两个来源:硬件来源(比如我们按下了键盘或者其它硬件故障);软件来源,最常用发送信号的系统函数是kill, raise, alarm和setitimer以及sigqueue函数,软件来源还包括一些非法运算等操作。
为了理解信号,先从我们最熟悉的场景说起:
1、用户输入命令,在Shell下启动一个前台进程。
2、用户按下Ctrl-C,这个键盘输入产生一个硬件中断。
3、如果CPU当前正在执行这个进程的代码,则该进程的用户空间代码暂停执行,CPU从用户态切换到内核态处理硬件中断。
4、终端驱动程序将Ctrl-C解释成一个SIGINT信号,记在该进程的PCB中(也可以说发送了一个SIGINT信号给该进程)。
当某个时刻要从内核返回到该进程的用户空间代码继续执行之前,首先处理PCB中记录的信号,发现有一个SIGINT信号待处理,而这个信号的默认处理动作是终止进程,所以直接终止进程而不再返回它的用户空间代码执行。
注意,Ctrl-C产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程。Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像Ctrl-C这种控制键产生的信号。前台进程在运行过程中用户随时可能按下Ctrl-C而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都有可能收到SIGINT信号而终止,所以信号相对于进程的控制流程来说是异步的。
用kill -l命令可以察看系统定义的信号列表:
每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义#define SIGINT 2。编号34以上的是实时信号,我们目前只讨论编号34以下的信号,不讨论实时信号。这些信号各自在什么条件下产生,默认的处理动作是什么,在signal(7)中都有详细说明:
Signal Value Action Comment
-------------------------------------------------------------------------
SIGHUP 1 Term Hangupdetected on controlling terminalor death of controlling process
SIGINT 2 Term Interruptfrom keyboard
SIGQUIT 3 Core Quitfrom keyboard
SIGILL 4 Core IllegalInstruction
...
上表中第一列是各信号的宏定义名称,第二列是各信号的编号,第三列是默认处理动作,Term表示终止当前进程,Core表示终止当前进程并且Core Dump(下一节详细介绍什么是Core Dump),Ign表示忽略该信号,Stop表示停止当前进程,Cont表示继续执行先前停止的进程,表中最后一列是简要介绍,说明什么条件下产生该信号。
信号的种类
可以从两个不同的分类角度对信号进行分类:(1)可靠性方面:可靠信号与不可靠信号;(2)与时间的关系上:实时信号与非实时信号。
1、可靠信号与不可靠信号
"不可靠信号":Linux信号机制基本上是从Unix系统中继承过来的。早期Unix系统中的信号机制比较简单和原始,后来在实践中暴露出一些问题,因此,把那些建立在早期机制上的信号叫做"不可靠信号",信号值小于SIGRTMIN(Red hat 7.2中,SIGRTMIN=32,SIGRTMAX=63)的信号都是不可靠信号。这就是"不可靠信号"的来源。它的主要问题是:
进程每次处理信号后,就将对信号的响应设置为默认动作。在某些情况下,将导致对信号的错误处理;因此,用户如果不希望这样的操作,那么就要在信号处理函数结尾再一次调用signal(),重新安装该信号。
因此,早期unix下的不可靠信号主要指的是进程可能对信号做出错误的反应以及信号可能丢失。
Linux支持不可靠信号,但是对不可靠信号机制做了改进:在调用完信号处理函数后,不必重新调用该信号的安装函数(信号安装函数是在可靠机制上的实现)。因此,Linux下的不可靠信号问题主要指的是信号可能丢失。
"可靠信号":随着时间的发展,实践证明了有必要对信号的原始机制加以改进和扩充。所以,后来出现的各种Unix版本分别在这方面进行了研究,力图实现"可靠信号"。由于原来定义的信号已有许多应用,不好再做改动,最终只好又新增加了一些信号,并在一开始就把它们定义为可靠信号,这些信号支持排队,不会丢失。同时,信号的发送和安装也出现了新版本:信号发送函数sigqueue()及信号安装函数sigaction()。POSIX.4对可靠信号机制做了标准化。但是,POSIX只对可靠信号机制应具有的功能以及信号机制的对外接口做了标准化,对信号机制的实现没有作具体的规定。
信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()以及信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。
注意:不要有这样的误解:由sigqueue()发送、sigaction安装的信号就是可靠的。事实上,可靠信号是指后来添加的新信号(信号值位于SIGRTMIN及SIGRTMAX之间);不可靠信号是信号值小于SIGRTMIN的信号。信号的可靠与不可靠只与信号值有关,与信号的发送及安装函数无关。目前linux中的signal()是通过sigation()函数实现的,因此,即使通过signal()安装的信号,在信号处理函数的结尾也不必再调用一次信号安装函数。同时,由signal()安装的实时信号支持排队,同样不会丢失。
对于目前linux的两个信号安装函数:signal()及sigaction()来说,它们都不能把SIGRTMIN以前的信号变成可靠信号(都不支持排队,仍有可能丢失,仍然是不可靠信号),而且对SIGRTMIN以后的信号都支持排队。这两个函数的最大区别在于,经过sigaction安装的信号都能传递信息给信号处理函数(对所有信号这一点都成立),而经过signal安装的信号却不能向信号处理函数传递信息。对于信号发送函数来说也是一样的。
2、实时信号与非实时信号
早期Unix系统只定义了32种信号,Ret hat7.2支持64种信号,编号0-63(SIGRTMIN=31,SIGRTMAX=63),将来可能进一步增加,这需要得到内核的支持。前32种信号已经有了预定义值,每个信号有了确定的用途及含义,并且每种信号都有各自的缺省动作。如按键盘的CTRL ^C时,会产生SIGINT信号,对该信号的默认反应就是进程终止。后32个信号表示实时信号,等同于前面阐述的可靠信号。这保证了发送的多个实时信号都被接收。实时信号是POSIX标准的一部分,可用于应用进程。
非实时信号都不支持排队,都是不可靠信号;实时信号都支持排队,都是可靠信号。
产生信号的条件主要有:
1、用户在终端按下某些键时,终端驱动程序会发送信号给前台进程,例如Ctrl-C产生SIGINT信号,Ctrl-\产生SIGQUIT信号,Ctrl-Z产生SIGTSTP信号,这个信号可使前台进程停止。
2、硬件异常产生信号,这些条件由硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。
3、一个进程调用kill(2)函数可以发送信号给另一个进程。
4、可以用kill(1)命令发送信号给某个进程,kill(1)命令也是调用kill(2)函数实现的,如果不明确指定信号则发送SIGTERM信号,该信号的默认处理动作是终止进程。
5、当内核检测到某种软件条件发生时也可以通过信号通知进程,例如闹钟超时产生SIGALRM信号,向读端已关闭的管道写数据时产生SIGPIPE信号。
如果不想按默认动作处理信号,用户程序可以调用sigaction(2)函数告诉内核如何处理某种信号(sigaction函数稍后详细介绍),可选的处理动作有以下三种:
1、忽略此信号。
2、执行该信号的默认处理动作。
3、提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。