1. 集群调度简介
Scheduler
是kubernetes
中的调度器组件,主要的任务是把定义的pod分配到集群的节点上。听起来非常简单,但有很多要考虑的问题:
- 公平: 如何保证每个节点都能被分配
- 资源资源高效利用: 集群所有资源最大化被使用
- 效率: 调度的性能要好,能够尽快地对大批量的pod完成调度工作
- 灵活: 允许用户根据自己的需求控制调度的逻辑
Sheduler
是作为单独的程序运行的(如果是kubeadm
则是以pod形式运行的),启动之后会一直和APIServer
持续连接,获取PodSpec.NodeName
为空的pod,对每个pod都会创建一个binding
,表明该 pod 应该放到哪个节点上
这里的
PodSpec.NodeName
不为空的pod,说明我们手动指定了这个pod应该部署在哪个node上,所以这种情况Sheduler
就不需要参与进来了
2. 调度过程
2.1 调度过程概览
调度过程分为两部分,如果中间任何一步骤有错误,直接返回错误:
-
predicate
(预选): 首先是过滤掉不满足条件的节点 -
priority
(优选): 然后从中选择优先级最高的节点
2.2 Predicate(预选)
Predicate
有一系列的算法可以使用:
- PodFitsResources: 节点上剩余的资源是否大于pod请求的资源
- Podfitshost: 如果pod指定了NodeName,检查节点名称是否和NodeName相匹配
- PodFfitsHostPorts: 节点上已经使用的port是否和 pod申请的port冲突
- PodSelectorMatches: 过滤掉和 pod指定的label不匹配的节点
- NoDiskConflict: 已经mount的volume和 pod指定的volume不冲突,除非它们都是只读
注意:
如果在predicate
过程中没有合适的节点。pod会一直在pending
状态,不断重试调度,直到有节点满足条件。经过这个步骤,如果有多个节点满足条件,就继续priorities
过程
2.3 Priorities(优选)
Priorities
是按照优先级大小对节点排序
优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。这些优先级选项包括:
- LeastRequestedPriority:通过计算CPU和 Memory的使用率来决定权重,使用率越低权重越高。换句话说,这个优先级指标倾向于资源使用比例更低的节点
- BalancedResourceA1location:节点上CPU和Memory 使用率越接近,权重越高。这个应该和上面的一起使用,不应该单独使用
- ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高
通过算法对所有的优先级项目和权重进行计算,得出最终的结果
3. 调度的亲和性
3.1 node亲和性
3.1.1 node亲和性简介
简单来理解就是,指定调度到的node
,nodeAffinity
又分为两种:
pod.spec.nodeAffinity
:
-
preferredDuringSchedulinglgnoredDuringExecution
:软策略【我想要去这个节点】 -
requiredDuringschedulinglgnoredDuringExecution
:硬策略【我一定要去这个节点】
3.1.2 node亲和性硬策略示例
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: with-node-affinity
image: lzw5399/tocgenerator
affinity:
# 指定亲和性为node亲和性
nodeAffinity:
# 指定为硬策略
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
# key就是node的label
# 这句话代表当前pod一定不能分配到k8s-node02节点上
- matchExpressions:
- key: kubernetes.io/hostname
operator: NotIn
values:
- k8s-node02
- 关于
- key: kubernetes.io/hostname
,可以通过以下方式查看node的label
$ kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
master Ready master 154d v1.10.0 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/hostname=master,node-role.kubernetes.io/master=
node02 Ready <none> 74d v1.10.0 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,com=youdianzhishi,course=k8s,kubernetes.io/hostname=node02
node03 Ready <none> 134d v1.10.0 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,jnlp=haimaxy,kubernetes.io/hostname=node03
3.1.3 node亲和性软策略示例
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: with-node-affinity
image: lzw5399/tocgenerator
affinity:
# 声明节点亲和性为软策略
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
# 当前策略权重为1
- weight: 1
preference:
# [最好]能分配到label为source=k8s-node03的节点上
matchExpressions:
- key: source
operator: In
values:
- k8s-node03
3.2 pod亲和性
3.2.1 pod亲和性/反亲和性简介
pod亲和性主要解决pod可以和哪些pod部署在同一个拓扑域中的问题
拓扑域: 用主机标签实现,可以是单个主机,或者具有同个label的多个主机,也可以是多个主机组成的 cluster、zone 等等
所以简单来说: 比如一个 pod 在一个节点上了,那么我这个也得在这个节点,或者你这个 pod 在节点上了,那么我就不想和你待在同一个节点上
pod亲和性/反亲和性又分为两种:
pod.spec.affinity.podAffinity/podAntiAffinity
:
-
preferredDuringSchedulinglgnoredDuringExecution
:软策略 -
requiredDuringSchedulinglgnoredDuringExecution
:硬策略
3.2.2 pod亲和性/反亲和性示例
apiVersion: v1
kind: Pod
metadata:
name: pod-3
labels:
app: pod-3
spec:
containers:
- name: pod-3
image: hub.coreqi.cn/library/myapp:v1
affinity:
# 配置一条pod亲和性策略
podAffinity:
# 配置为硬策略
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- pod-1
topologyKey: kubernetes.io/hostname
# 配置一条pod反亲和性策略
podAntiAffinity:
# 配置为软策略
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values:
- pod-2
topologyKey: kubernetes.io/hostname
3.3 亲和性/反亲和性调度策略比较
调度策略 | 匹配标签 | 操作符 | 拓扑域支持 | 调度目标 |
---|---|---|---|---|
nodeAffinity | 主机 | IN, NotIn, Exists, DoesNotExist, Gt, Lt | 否 | 指定主机 |
podAffinity | POD | IN, NotIn, Exists, DoesNotExist | 是 | POD与指定POD同一拓扑域 |
podAntiAffinity | POD | IN, NotIn, Exists, DoesNotExist | 是 | POD与指定POD不在同一拓扑域 |
4. Taint(污点)和Toleration(容忍)
4.1 Taint和和Toleration简介
节点亲和性
是pod的一种属性(偏好或硬性要求),它使pod被吸引到一类特定的节点。Taint
则相反,它使节点能够排斥一类特定的pod。
Taint
和toleration
相互配合,可以用来避免pod被分配到不合适的节点上。每个节点上都可以应用一个或多个taint,这表示对于那些不能容忍这些taint的pod,是不会被该节点接受的。如果将toleration 应用于pod上,则表示这些pod 可以(但不要求)被调度到具有匹配 taint 的节点上。
如果没有特别配置toleration,默认是不容忍所有污点的
4.2 Taint(污点)
4.2.1 Taint的组成
污点的value是可选项,即污点有两种组成形式
key-value:effect
key:effect
effect
effect描述污点的作用, 当前支持三种策略:
-
NoSchedu1e
:表示k8s将不会将Pod 调度到具有该污点的Node上 -
PreferNoSchedu1e
:表示k8s将尽量避免将Pod调度到具有该污点的 Node上 -
NoExecute
:表示k8s将不会将 Pod调度到具有该污点的Node上,同时会将Node上已经存在的 Pod 驱逐出去
4.2.2 Taint的设置、查看和去除
- 设置污点
# value不为空的格式
kubectl taint nodes node1 key1=value1:NoSchedule
# value为空的格式
kubectl taint nodes node1 key1:NoExecute
- 污点的查看
# 通过describe node查看Taints属性
kubectl describe node nodename
- 污点的去除
- 通过describe查看污点,然后把污点复制出来,按照如下格式在最后加一个
-
就好了
- 通过describe查看污点,然后把污点复制出来,按照如下格式在最后加一个
# 去除如上截图的一个污点
kubectl taint nodes node1 haha-233:NoSchedule-
4.3 Toleration(容忍)
4.3.1 Toleration简介
设置了污点的Node将根据taint
的effect
:NoSchedule
、PreferNoSchedule
、NoExecute
和 Pod之间产生互斥的关系,Pod将在一定程度上不会被调度到Node上
但我们可以在Pod上设置容忍(Toleration)。意思是设置了容忍的Pod将可以容忍污点的存在,可以被调度到存在污点的Node上
可以被调度不代表一定会被调度,只是保存了可能性
4.3.2 Toleration的资源清单配置
如下是pod.spec.tolerations
部分:
tolerations:
# 容忍key1-value1:NoSchedule的污点
# 且需要被驱逐时,可以再呆3600秒
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoSchedule"
# 用于描述当Pod需要被驱逐时可以在 Pod上继续保留运行的时间
tolerationSeconds: 3600
# 容忍key1-value1:NoExecute的污点
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoExecute"
# 容忍key2:NoSchedule的污点
- key:"key2"
operator: "Exists"
effect: "NoSchedule"
注意点
-
key
,value
,effect
要与Node上设置的 taint保持一致 -
operator
的值为Exists
将会忽略value值 - 如不指定
operator
,则默认为equal
-
tolerationSeconds
用于描述当Pod需要被驱逐时可以在 Pod上继续保留运行的时间
骚操作
- 当不指定key值时,表示容忍所有的污点key
tolerations:
- operator: "Exists"
- 当不指定
effect
时,表示容忍所有的污点作用
tolerations:
- key: "key"
operator: "Exists"
- 有多个
Master
存在时,防止资源浪费,可以如下设置
kubectl taint nodes Node-Name node-role.kubernetes.io/master=:PreferNoSchedule
5. 指定调度节点
通过指定Pod.spec.nodeName
将Pod直接调度到指定的Node节点上
- 会跳过Scheduler的调度策略
- 该匹配规则是强制匹配
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: myweb
spec:
replicas: 7
template:
metadata:
labels:
app: myweb
spec:
# 直接指定node名称
nodeName: k8s-node01
containers:
- name: myweb
image: lzw5399/tocgenerator
ports:
- containerPort: 80
kubernetes系列(十五) - 集群调度的更多相关文章
-
二进制方式部署Kubernetes 1.6.0集群(开启TLS)
本节内容: Kubernetes简介 环境信息 创建TLS加密通信的证书和密钥 下载和配置 kubectl(kubecontrol) 命令行工具 创建 kubeconfig 文件 创建高可用 etcd ...
-
Spark踩坑记——从RDD看集群调度
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了 ...
-
dubbo源码解析五 --- 集群容错架构设计与原理分析
欢迎来我的 Star Followers 后期后继续更新Dubbo别的文章 Dubbo 源码分析系列之一环境搭建 博客园 Dubbo 入门之二 --- 项目结构解析 博客园 Dubbo 源码分析系列之 ...
-
k8s学习-集群调度
4.7.集群调度 4.7.1.说明 简介 Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上.听起来非常简单,但有很多要考虑的问题: 公平:如何保 ...
-
quartz集群调度机制调研及源码分析---转载
quartz2.2.1集群调度机制调研及源码分析引言quartz集群架构调度器实例化调度过程触发器的获取触发trigger:Job执行过程:总结:附: 引言 quratz是目前最为成熟,使用最广泛的j ...
-
(1)quartz集群调度机制调研及源码分析---转载
quartz2.2.1集群调度机制调研及源码分析 原文地址:http://demo.netfoucs.com/gklifg/article/details/27090179 引言quartz集群架构调 ...
-
使用Kubeadm搭建Kubernetes(1.12.2)集群
Kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,在2018年将进入GA状态,说明离生产环境中使用的距离越来 ...
-
利用ansible来做kubernetes 1.10.3集群高可用的一键部署
请读者务必保持环境一致 安装过程中需要下载所需系统包,请务必使所有节点连上互联网. 本次安装的集群节点信息 实验环境:VMware的虚拟机 IP地址 主机名 CPU 内存 192.168.77.133 ...
-
二十六. 集群及LVS简介 LVS-NAT集群 LVS-DR集群
方案:安装ipvsadm软件包,关于ipvsadm的用法可以参考man ipvsadm资料. 常用ipvsadm命令语法格式如表-1及表-2所示. 1.ipvsadm命令用法(proxy) 1.1 创 ...
随机推荐
-
【poj1011】 Sticks
http://poj.org/problem?id=1011 (题目链接) 题意 给出一大堆小棍子的长度,需要把他们拼成几根长度相等的大棍子,求大棍子的最短长度. Solution 经典搜索题,剪枝剪 ...
-
iOS开发UI篇—IOS开发中Xcode的一些使用技巧
iOS开发UI篇—IOS开发中Xcode的一些使用技巧 一.快捷键的使用 经常用到的快捷键如下: 新建 shift + cmd + n 新建项目 cmd + n 新建文 ...
-
css之z-index深度解析
(几个重点概念解析) 一.层叠上下文 层叠上下文:如果一个元素拥有层叠上下文.那么就代表这个元素在页面的z轴上是有定位的. 什么元素拥有 层叠上下文:a.根元素.b.z-index值为数值的元素.c. ...
-
oracle 中如何定位重要(消耗资源多)的SQL【转】
1.查看值得怀疑的SQL )||'%'load, s.executions executes, p.sql_text from(select address, disk_reads, executio ...
-
HotSpot虚拟机对象探秘-笔记
学习目的:探讨HotSpot虚拟机在Java堆中对象分配.布局和访问的全过程. 1.对象的创建 虚拟机在执行到一条new指令时,先要检查指令的参数(将要实例化的类)是否已经被加载.解析.初始化过,如果 ...
-
git使用中出现的错误
因同时有两个git账户,之前登录了git A 用户在使用了 1. 长期存储密码 git config --global credential.helper store 之后在git B 账 ...
-
Nginx 服务器的安装部署(CentOS系统)
1.准备安装环境yum -y install gcc gcc-c++ automake pcre pcre-devel zlib zlib-devel open openssl-develgcc编译器 ...
-
vs2012旗舰版 有效注册密钥
Microsoft Visual Studio Ultimate 2012 旗舰版 有效注册密钥: YKCW6-BPFPF-BT8C9-7DCTH-QXGWC
-
Debian&;&;ubuntu系安装MegaCli
MegaCli这个命令可以用来监控raid状态.磁盘状况等,最近上了一批ubuntu系统跑openstack,问题是MegaCli在官网上只有rpm格式的包,没有deb的包,但是还是有办法解决的,rp ...
-
appfog 添加数据库支持
1.PhpMyAdmin与app 在同一应用 1.cd进入应用所在的文件夹,输入 git clone git://github.com/appfog/af-php-myadmin.git 2.进入本地 ...