快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
算法的思路很清晰,但是如果在区间划分过程中边界值没有处理好,也是很容易出现bug的。下面给出两种比较清晰的思维来指导区间划分代码的编写。
第一种思维即所谓的挖坑法思维,下面通过分析一个实例来分析一下挖坑法的过程:
以一个数组作为示例,取区间第一个数为基准数。
初始时,left = 0; right= 9; X = a[left] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从right开始向前找一个<=X的数。显然,right=8时,符合条件,将a[8]挖出再填到上一个坑a[left]中。 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从left开始向后找一个大于X的数,当left=3,符合条件,将a[3]挖出再填到上一个坑a[right] 中;
数组变为:
再重复上面的步骤,最终数组将变成如下形式:
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。将X填入a[5]的坑中,数据变为:
因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
照此分区方法,快速排序Java代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
public class Partition {
/**
* 基于base划分,小的在左,大的在右, 不要求整个序列有序
*
* @param ary
* @param base
*/
static void sort( int [] ary, int base) {
int left = 0 ;
int right = ary.length - 1 ;
int leftpoint = left, rightpoint = right;
while ( true ) {
// 分成左右两边同时进行比较,一边从左向右,一边从右向左,
while (leftpoint < right && ary[leftpoint++] < base); //leftpoint大于right或ary[leftpoint]>base停止循环
while (rightpoint >= left && ary[rightpoint--] > base); //反之
System.out.println( "左边需要交换的索引:" + (leftpoint- 1 ));
System.out.println( "右边需要交换的索引:" + (rightpoint+ 1 ));
//上面拿到了不符合条件的两个索引,即需要交换的两个索引
if (leftpoint - 1 < rightpoint + 1 ) { //需要交换
swap(ary, leftpoint - 1 , rightpoint + 1 );
Util.printArray(ary);
leftpoint = left;
rightpoint = right;
} else {
break ;
}
}
}
private static void swap( int [] ary, int a, int b) {
int temp = ary[a];
ary[a] = ary[b];
ary[b] = temp;
}
public static void main(String[] args) {
int [] ary = Util.generateIntArray( 10 );
System.out.println( "原序列:" );
Util.printArray(ary);
sort(ary, 5 );
System.out.println( "排序后:" );
Util.printArray(ary);
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
11
12
|
原序列:
[2, 8, 4, 3, 7, 5, 1, 9, 0, 6]
左边需要交换的索引:1
右边需要交换的索引:8
[2, 0, 4, 3, 7, 5, 1, 9, 8, 6]
左边需要交换的索引:4
右边需要交换的索引:6
[2, 0, 4, 3, 1, 5, 7, 9, 8, 6]
左边需要交换的索引:5
右边需要交换的索引:5
排序后:
[2, 0, 4, 3, 1, 5, 7, 9, 8, 6]
|
区间划分的的另一种指导思维:
将数组的第一个元素作为区间划分值,从第二个元素开始分区,直到形成如图所示的结果,
然后交换l<t区间的右边界值和t,形成如下的结果:
如此,可以如下编写快速排序代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
public void qSort( int array[], int left, int right)
{
if (left < right){
int key = array[left];
int high = right;
int low = left+ 1 ;
while ( true ){
while (low <= high && array[low] <= key) low++;
while (low <= high && array[high] >= key) high--;
if (low > high)
break ;
swap(array,low,high);
}
swap(array,left,high);
printArray(array);
qSort(array,left,high- 1 );
qSort(array,high+ 1 ,right);
}
}
|