Python学习笔记—函数

时间:2021-07-20 03:58:14

函数

我们知道圆的面积计算公式为:

S = πr2

当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:

r1 = 12.34
r2 = 9.08
r3 = 73.1
s1 = 3.14 * r1 * r1
s2 = 3.14 * r2 * r2
s3 = 3.14 * r3 * r3

当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。

有了函数,我们就不再每次写s = 3.14 * x * x,而是写成更有意义的函数调用s = area_of_circle(x),而函数area_of_circle本身只需要写一次,就可以多次调用。

基本上所有的高级语言都支持函数,Python也不例外。Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

抽象

抽象是数学中非常常见的概念。举个例子:

计算数列的和,比如:1 + 2 + 3 + ... + 100,写起来十分不方便,于是数学家发明了求和符号∑,可以把1 + 2 + 3 + ... + 100记作:

100

∑n

n=1

这种抽象记法非常强大,因为我们看到∑就可以理解成求和,而不是还原成低级的加法运算。

而且,这种抽象记法是可扩展的,比如:

100

∑(n2+1)

n=1

还原成加法运算就变成了:

(1 x 1 + 1) + (2 x 2 + 1) + (3 x 3 + 1) + ... + (100 x 100 + 1)

可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。

写计算机程序也是一样,函数就是最基本的一种代码抽象的方式。

调用函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:

http://docs.python.org/2/library/functions.html#abs

也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

调用abs函数:

>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

>>> abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

>>> abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

而比较函数cmp(x, y)就需要两个参数,如果x<y,返回-1,如果x==y,返回0,如果x>y,返回1

>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
0

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> unicode(100)
u'100'
>>> bool(1)
True
>>> bool('')
False

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:

>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1

小结

调用Python的函数,需要根据函数定义,传入正确的参数。如果函数调用出错,一定要学会看错误信息,所以英文很重要!

2、定义函数

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

我们以自定义一个求绝对值的my_abs函数为例:

def my_abs(x):
if x >= 0:
return x
else:
return -x

请自行测试并调用my_abs看看返回结果是否正确。

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None

return None可以简写为return

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

def nop():
pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

if age >= 18:
pass

缺少了pass,代码运行就会有语法错误。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError

>>> my_abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: my_abs() takes exactly 1 argument (2 given)

但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs和内置函数abs的差别:

>>> my_abs('A')
'A'
>>> abs('A')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,所以,这个函数定义不够完善。

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance实现:

def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

>>> my_abs('A')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_abs
TypeError: bad operand type

错误和异常处理将在后续讲到。

返回多个值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

import math

def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny

这样我们就可以同时获得返回值:

>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0

但其实这只是一种假象,Python函数返回的仍然是单一值:

>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)

原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

小结

定义函数时,需要确定函数名和参数个数;

如果有必要,可以先对参数的数据类型做检查;

函数体内部可以用return随时返回函数结果;

函数执行完毕也没有return语句时,自动return None

函数可以同时返回多个值,但其实就是一个tuple。

3、函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

默认参数

我们仍以具体的例子来说明如何定义函数的默认参数。先写一个计算x2的函数:

def power(x):
return x * x

当我们调用power函数时,必须传入有且仅有的一个参数x

>>> power(5)
25
>>> power(15)
225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

对于这个修改后的power函数,可以计算任意n次方:

>>> power(5, 2)
25
>>> power(5, 3)
125

但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码无法正常调用:

>>> power(5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 arguments (1 given)

这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2:

def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

这样,当我们调用power(5)时,相当于调用power(5, 2)

>>> power(5)
25
>>> power(5, 2)
25

而对于n > 2的其他情况,就必须明确地传入n,比如power(5, 3)

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入namegender两个参数:

def enroll(name, gender):
print 'name:', name
print 'gender:', gender

这样,调用enroll()函数只需要传入两个参数:

>>> enroll('Sarah', 'F')
name: Sarah
gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

def enroll(name, gender, age=6, city='Beijing'):
print 'name:', name
print 'gender:', gender
print 'age:', age
print 'city:', city

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

>>> enroll('Sarah', 'F')
Student:
name: Sarah
gender: F
age: 6
city: Beijing

只有与默认参数不符的学生才需要提供额外的信息:

enroll('Bob', 'M', 7)
enroll('Adam', 'M', city='Tianjin')

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7),意思是,除了namegender这两个参数外,最后1个参数应用在参数age上,city参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'),意思是,city参数用传进去的值,其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个list,添加一个END再返回:

def add_end(L=[]):
L.append('END')
return L

当你正常调用时,结果似乎不错:

>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

>>> add_end()
['END']

但是,再次调用add_end()时,结果就不对了:

>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

def add_end(L=None):
if L is None:
L = []
L.append('END')
return L

现在,无论调用多少次,都不会有问题:

>>> add_end()
['END']
>>> add_end()
['END']

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

def calc(numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

  

但是调用的时候,需要先组装出一个list或tuple:

>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84

  

如果利用可变参数,调用函数的方式可以简化成这样:

>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84

  

所以,我们把函数的参数改为可变参数:

def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

  

定义可变参数和定义list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

>>> calc(1, 2)
5
>>> calc()
0

  

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14

  

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

>>> nums = [1, 2, 3]
>>> calc(*nums)
14

  

这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

def person(name, age, **kw):
print 'name:', name, 'age:', age, 'other:', kw

  

函数person除了必选参数nameage外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

>>> person('Michael', 30)
name: Michael age: 30 other: {}

  

也可以传入任意个数的关键字参数:

>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

  

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到nameage这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=kw['city'], job=kw['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

  

当然,上面复杂的调用可以用简化的写法:

>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **kw)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

  

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。

比如定义一个函数,包含上述4种参数:

def func(a, b, c=0, *args, **kw):
print 'a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw

  

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

>>> func(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> func(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> func(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> func(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}

  

最神奇的是通过一个tuple和dict,你也可以调用该函数:

>>> args = (1, 2, 3, 4)
>>> kw = {'x': 99}
>>> func(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'x': 99}

  

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过*args传入:func(*(1, 2, 3))

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})

使用*args**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

4、递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):
if n==1:
return 1
return n * fact(n - 1)

  

上面就是一个递归函数。可以试试:

>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L

  

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120

  

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)

>>> fact(1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in fact
...
File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded

  

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):
return fact_iter(n, 1) def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

  

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(5, 1)的调用如下:

===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120

  

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

Python学习笔记—函数的更多相关文章

  1. Python学习笔记 - 函数参数

    >>> def power(x): ... return x * x ... >>> power(5) 25 >>> def power(x, n ...

  2. Python学习笔记 — 函数

    函数是对程序逻辑进行结构化或过程化的一种编程方法.函数具有两个方面的意义:1)将代码分块,易于管理和阅读:2)最大化代码复用和最小化代码冗余,节省空间,有助于保持一致性. 1. 函数定义 Python ...

  3. Python学习笔记-函数基础

    函数基础 定义: 函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 为什么使用函数:减少重复代码.使程序变的可扩展使程序变得易维护 1.定义一个函数 #定 ...

  4. 04 python学习笔记-函数、函数参数和返回值(四)

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段.函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print(),我们也可以自己创建函数,这叫做用户自定 ...

  5. python学习笔记-函数与可变长参数

    一.函数 1. def test(x): y=x+1 return yprint(test) #这是打印函数在内存中的地址 过程:就是没有返回值的函数 在python中过程也是函数,就算没哟返回值,也 ...

  6. Python学习笔记——函数

    1.标准类型内建函数 <1>type() —— 返回对象的类型 <2>cmp() —— 比较两个对象,返回两个对象的ASCII码的差 <3>str().repr() ...

  7. python学习笔记 函数

    形式: def function(a,b,c=0,*args,**kw)#a,b必选参数,*args可变参数,**kw关键字参数 1.函数的返回值可以是多个参数.多个参数时,实际上返回的是一个tupl ...

  8. Python学习笔记(二):条件控制语句与循环语句及常用函数的用法

    总结的内容: 1.条件控制语句 2.while循环语句 3.for循环语句 4.函数的用法 一.条件控制语句 1.介绍 Python条件语句是通过一条或多条语句的执行结果(True或者False)来决 ...

  9. Python学习笔记014——迭代工具函数 内置函数enumerate&lpar;&rpar;

    1 描述 enumerate() 函数用于将一个可遍历的数据对象(如列表.元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中. 2 语法 enumerate(sequ ...

随机推荐

  1. WCF 中 TCP 与 HTTP 性能简单比较

    在使用 WCF 时,为了更好地进行调试,我都选择了 HTTP 协议进行数据传输.最近项目对性能要求比较高,所以就换成了使用 TCP 协议.并对二者的性能进行了一个简单的测试.以下是测试结果: 环境: ...

  2. Dojo注意

    关于插件的加载: 回调函数中的顺序,是按照插件的顺序填写的,否则就很可能会插件加载出错.

  3. mysql实用教程的数据构造

    create database XSCJ; use XSCJ; create table XS ( 学号 ) primary key not null, 姓名 ) not null, 专业名 ), 性 ...

  4. redis中模糊删除

    /usr/local/redis/bin/redis-cli -h xx.xx.xx.xx KEYS "*floor*" | xargs /usr/local/redis/bin/ ...

  5. android工程gen目录中R&period;java包名是怎么确定

    新建一个工程,包名用的com.mythroad.adskiller, 后来觉得不好,又改成com.mythroad.adsinscepter,但是我发现gen下的R.java文件的包名还是原来的com ...

  6. C&plus;&plus;学习笔记25&comma;析构函数总是会宣布virtual

    为了永远记住析构函数声明virtual----><<effective c++>> 为这句话不一定对,但无需质疑的是这句话是非常实用的. 查看以下的样例: #includ ...

  7. chrome 开发人员工具

    JavaScript Beautifier JavaScript 文件在上线前一般都会压缩下,压缩的 JavaScript 几乎没有可读性,几乎无法设定断点.在 Scripts 面板下面有个 Pret ...

  8. 【Learning】 莫比乌斯反演

    莫比乌斯反演 ​ 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) ​ 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limi ...

  9. c——简单排序

    1.交换排序 a.冒泡排序 #include <stdio.h> int main() { , , , , }, i, j, t; ; i>=; i--) { ; j<i; j ...

  10. 下划线字符串camel

    const camel = (str) => { let slices = str.split('_'); let result = []; for(let i = 1, len = slice ...