package com.flink.DataStream
import java.util.Properties
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer09, FlinkKafkaProducer09}
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
import org.apache.flink.api.scala._
import org.apache.kafka.common.serialization.ByteArraySerializer
/**
* Created by angel;
*/
object DataSource_kafka {
def main(args: Array[String]): Unit = {
//1指定kafka数据流的相关信息
val zkCluster = "hadoop01,hadoop02,hadoop03:2181"
val kafkaCluster = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
val kafkaTopicName = "test"
val sinkKafka = "test2"
//2.创建流处理环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//3.创建kafka数据流
val properties = new Properties()
properties.setProperty("bootstrap.servers", kafkaCluster)
properties.setProperty("zookeeper.connect", zkCluster)
properties.setProperty("group.id", kafkaTopicName)
val kafka09 = new FlinkKafkaConsumer09[String](kafkaTopicName, new SimpleStringSchema(), properties)
//4.添加数据源addSource(kafka09)
val text = env.addSource(kafka09).setParallelism(4)
/**
* test#CS#request http://b2c.csair.com/B2C40/query/jaxb/direct/query.ao?t=S&c1=HLN&c2=CTU&d1=2018-07-12&at=2&ct=2&inf=1#CS#POST#CS#application/x-www-form-urlencoded#CS#t=S&json={'adultnum':'1','arrcity':'NAY','childnum':'0','depcity':'KHH','flightdate':'2018-07-12','infantnum':'2'}#CS#http://b2c.csair.com/B2C40/modules/bookingnew/main/flightSelectDirect.html?t=R&c1=LZJ&c2=MZG&d1=2018-07-12&at=1&ct=2&inf=2#CS#123.235.193.25#CS#Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1#CS#2018-01-19T10:45:13:578+08:00#CS#106.86.65.18#CS#cookie
* */
val values: DataStream[ProcessedData] = text.map{
line =>
var encrypted = line
val values = encrypted.split("#CS#")
val valuesLength = values.length
var regionalRequest = if(valuesLength > 1) values(1) else ""
val requestMethod = if (valuesLength > 2) values(2) else ""
val contentType = if (valuesLength > 3) values(3) else ""
//Post提交的数据体
val requestBody = if (valuesLength > 4) values(4) else ""
//http_referrer
val httpReferrer = if (valuesLength > 5) values(5) else ""
//客户端IP
val remoteAddr = if (valuesLength > 6) values(6) else ""
//客户端UA
val httpUserAgent = if (valuesLength > 7) values(7) else ""
//服务器时间的ISO8610格式
val timeIso8601 = if (valuesLength > 8) values(8) else ""
//服务器地址
val serverAddr = if (valuesLength > 9) values(9) else ""
//获取原始信息中的cookie字符串
val cookiesStr = if (valuesLength > 10) values(10) else ""
ProcessedData(regionalRequest,
requestMethod,
contentType,
requestBody,
httpReferrer,
remoteAddr,
httpUserAgent,
timeIso8601,
serverAddr,
cookiesStr)
}
values.print()
val remoteAddr: DataStream[String] = values.map(line => line.remoteAddr)
remoteAddr.print()
//TODO sink到kafka
val p: Properties = new Properties
p.setProperty("bootstrap.servers", "hadoop01:9092,hadoop02:9092,hadoop03:9092")
p.setProperty("key.serializer", classOf[ByteArraySerializer].getName)
p.setProperty("value.serializer", classOf[ByteArraySerializer].getName)
val sink = new FlinkKafkaProducer09[String](sinkKafka, new SimpleStringSchema(), properties)
remoteAddr.addSink(sink)
//5.触发运算
env.execute("flink-kafka-wordcunt")
}
}
//保存结构化数据
case class ProcessedData(regionalRequest: String,
requestMethod: String,
contentType: String,
requestBody: String,
httpReferrer: String,
remoteAddr: String,
httpUserAgent: String,
timeIso8601: String,
serverAddr: String,
cookiesStr: String
)