Linux 内核网络协议栈

时间:2022-03-09 01:20:33

转自:http://blog.csdn.net/shanshanpt/article/details/21024465

 

在2.6.24之后这个结构体有了较大的变化,此处先说一说2.6.16版本的sk_buff,以及解释一些问题。

 

一、

先直观的看一下这个结构体~~~~~~~~~~~~~~~~~~~~~~在下面解释每个字段的意义~~~~~~~~~~~

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. struct sk_buff {  
  2.          /* These two members must be first. */  
  3.          struct sk_buff          *next;  
  4.          struct sk_buff          *prev;  
  5.    
  6.          struct sock             *sk;  
  7.          struct skb_timeval      tstamp;  
  8.          struct net_device       *dev;  
  9.          struct net_device       *input_dev;  
  10.    
  11.          union {  
  12.                  struct tcphdr   *th;  
  13.                  struct udphdr   *uh;  
  14.                  struct icmphdr  *icmph;  
  15.                  struct igmphdr  *igmph;  
  16.                  struct iphdr    *ipiph;  
  17.                  struct ipv6hdr  *ipv6h;  
  18.                  unsigned char   *raw;  
  19.          } h;  
  20.    
  21.          union {  
  22.                  struct iphdr    *iph;  
  23.                  struct ipv6hdr  *ipv6h;  
  24.                  struct arphdr   *arph;  
  25.                  unsigned char   *raw;  
  26.          } nh;  
  27.    
  28.          union {  
  29.                  unsigned char   *raw;  
  30.          } mac;  
  31.    
  32.          struct  dst_entry       *dst;  
  33.          struct  sec_path        *sp;  
  34.    
  35.          /* 
  36.           * This is the control buffer. It is free to use for every 
  37.           * layer. Please put your private variables there. If you 
  38.           * want to keep them across layers you have to do a skb_clone() 
  39.           * first. This is owned by whoever has the skb queued ATM. 
  40.           */  
  41.          char                    cb[48];  
  42.    
  43.          unsigned int            len,  
  44.                                  data_len,  
  45.                                  mac_len,  
  46.                                  csum;  
  47.          __u32                   priority;  
  48.          __u8                    local_df:1,  
  49.                                  cloned:1,  
  50.                                  ip_summed:2,  
  51.                                  nohdr:1,  
  52.                                  nfctinfo:3;  
  53.          __u8                    pkt_type:3,  
  54.                                  fclone:2,  
  55.                                  ipvs_property:1;  
  56.          __be16                  protocol;  
  57.    
  58.          void                    (*destructor)(struct sk_buff *skb);  
  59. #ifdef CONFIG_NETFILTER  
  60.          __u32                   nfmark;  
  61.          struct nf_conntrack     *nfct;  
  62. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)  
  63.          struct sk_buff          *nfct_reasm;  
  64. #endif  
  65. #ifdef CONFIG_BRIDGE_NETFILTER  
  66.          struct nf_bridge_info   *nf_bridge;  
  67. #endif  
  68. #endif /* CONFIG_NETFILTER */  
  69. #ifdef CONFIG_NET_SCHED  
  70.          __u16                   tc_index;       /* traffic control index */  
  71. #ifdef CONFIG_NET_CLS_ACT  
  72.          __u16                   tc_verd;        /* traffic control verdict */  
  73. #endif  
  74. #endif  
  75.    
  76.    
  77.          /* These elements must be at the end, see alloc_skb() for details.  */  
  78.          unsigned int            truesize;  
  79.          atomic_t                users;  
  80.          unsigned char           *head,  
  81.                                  *data,  
  82.                                  *tail,  
  83.                                  *end;  
  84. };  

 

 

> : next和prev,这两个域是用来连接相关的skb的(例如如果有分片,将这些分片连接在一起可以)

> : sk,指向报文所属的套接字指针

> : tstamp,记录接收或者传输报文的时间戳

> : dev和input_dev,记录接收或者发送的设备

>: union u,对于一个层次,例如tcp层,可能有很多不同的协议,他们的协议头不一样,那么这个联合体就是记录这些协议头的。

     此处u就是代表传输层

> : union nh,代表网络层头

> : union mac,代表链路层头

> : dst,指向des_entry结构,记录了到达目的地的路由信息,以及其他的一些网络特征信息。

> : sp:安全路径,用于xfrm

> : cb[],保存与协议相关的控制信息,每个协议可能独立使用这些信息。

> : 重要的字段 len 和 data_len:

      len代: 表整个数据区域的长度!这里要提前解释几个定义,skb的组成是有sk_buff控制 + 线性数据 + 非线性数据 

      (skb_shared_info) 组成!

     后面会具体解释是什么意思!在sk_buff这个里面没有实际的数据,这里仅仅是控制信息,数据是通过后面的data指针指向其他内

     存块的!那个内存块中是线性数据和

     非线性数据!那么len就是length(线性数据) + length(非线性数据)!!!

     data_len: 指的是length(非线性数据)!!!那么可以知道:length(线性数据) =  skb->len - skb->data_len

> : mac_len,指的是mac头长度

> : csum,某时刻协议的校验和

> : priority,报文排队优先级,取决于ip中的tos域

> : local_df,允许在本地分配

> : cloned,保存当前的skb_buff是克隆的还是原始数据

> : ip_summed,是否计算ip校验和

> : nohdr,仅仅引用数据区域

> : pkt_type,报文类型,例如广播,多播,回环,本机,传出...

> : fclone,skb_buff克隆状态

> : ipvs_property,skb_buff是否属于ipvs

> : protocal,协议信息

> : nfmark,用于钩子之间通信

> : nfct_reasm,netfilter的跟踪连接重新组装指针

> : nf_bridge,保存桥接信息

> : tc_index: Traffic control index,tc_verd: traffic control verdict

> : truesize,该缓冲区分配的所有总的内存,包括:skb_buff + 所有数据大小

> : users,保存引用skb_buff的数量

> : 重要数据字段:head,data,tail,end!!!

    head:指向分配给的线性数据内存首地址( 建立起一个观念:并不是分配这么多内存,就都能被使用作为数据存储,可能没这么多

    数据也有可能!但是也不要认为分配这么多 就足够了,也不一定(非线性数据就是例子) )

    data:指向保存数据内容的首地址!我们由head可以知道,head和data不一定就是指在同一个位置!!!

    tail:指向数据的结尾!

    end:指向分配的内存块的结尾! ( 由上面我们知道数据结尾 != 分配的内存块的结尾 )

    下面还会具体分析!!!!!!!!!!!

 

二、

我觉得需要先了解一些对于一个数据skb到底有什么,或者说由哪些元素组成!这就需要知道所谓的 “线性数据” 和 “非线性数据”。

基本的组成如下:

> : sk_buff : 这是一个sk_buff的控制结构

> : 线性数据区域

> : 非线性数据区域( 由skb_shared_info结构体管理 )

 

那么下面通过一个图来看看这个skb结构到底是怎么样的!看(图一)

Linux 内核网络协议栈

                                                                                    (图一)

借助图一,我们先来分析两个重要字段:len和data_len

之前说过len代表的是整个数据的长度,data_len代表的是非线性数据长度。我们由图一可以看到线性数据长度为l1,再看看非线性数据,其实就是看frags[]和frag_list

ok...那么我们可以知道非线性数据长度为( l2 + ... + ln ) + ( l(n+1) + ... + lm )

即:len = l1 + ( l2 + ... + ln ) + ( l(n+1) + ... + lm )

        data_len = ( l2 + ... + ln ) + ( l(n+1) + ... + lm )

 

ok...

 

现在从分配内存开始解释这个图的由来:

我们使用skb_alloc给skb分配空间,那么刚刚分配结束返回时候,是什么样的情况呢?看下图(图二):

                                                Linux 内核网络协议栈

                                                                                     (图二)

 

刚刚开始初始化的时候,预分配一个一块线性数据区域,这个区域一般放入的是各个协议层次的不同的头,还有一些实际数据,下面的非线性区域是为了弥补当数据真的很多的时候,作为数据区域的扩展!关于skb_shared_info具体意思下面会继续说!注意在初始化的时候,head,data和tail都指向内存的开始位置,head在这个位置始终不变,它表示的是分配的内存的开始位置。end的位置也是不变的,表示的是分配的内存的结束位置。data和tail会随着数据的加入和减少变化,总之表示的是放入数据的内存区域(由图一)可知。

 

现在需要解释一下skb_shared_info这个结构体,这个结构体真的是很很有特色!主要是其中的两个字段frags和frag_list,下面继续解释:

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. struct skb_shared_info {  
  2.          atomic_t        dataref;        // 对象被引用次数  
  3.          unsigned short  nr_frags;       // 分页段数目,即frags数组元素个数  
  4.          unsigned short  tso_size;         
  5.          unsigned short  tso_segs;  
  6.          unsigned short  ufo_size;  
  7.          unsigned int    ip6_frag_id;  
  8.          struct sk_buff  *frag_list;    // 一般用于分段(还没有非常清楚的理解)  
  9.          skb_frag_t      frags[MAX_SKB_FRAGS]; // 保存分页数据(skb->data_len=所有的数组数据长度之和)  
  10. };  


关于frags和frag_list没有必然的联系!

 

 

> : 对于frags[]一般用在,当数据真的很多,而且在线性数据区域装不下的时候,需要使用这个,skb_frag_t中是一页一页的数据,先看看结构体:

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. struct skb_frag_struct {  
  2.          struct page *page;    // 代表一页数据  
  3.          __u16 page_offset;    // 代表相对开始位置的页偏移量  
  4.          __u16 size;           // page中数据长度  
  5. };  


需要注意的是:只有在DMA支持物理分散页的Scatter/Gather(SG,分散/聚集)操作时候才可以使用frags[]来保存剩下的数据,否则,只能扩展线性数据区域进行保存!!!

 

这些页其实是其实就是虚拟页映射到物理页的结构,看下图(图三):

Linux 内核网络协议栈

                                                                                         (图三)

 

> : 对于frag_list来说,一般我们在分片的时候里面装入每个片的信息,注意,每个片最终也都是被封装成一个小的skb,这个必须

     的!

     注意:具体怎么分片的看上一篇博文:数据分片 (  看其中的ip_fragment函数  )

     那么看一下其基本结构如图四:

                                                         Linux 内核网络协议栈

                                                                                         (图四)

 

三、

最重要的是需要理解对于这个skb是怎么操作的,在操作的过程中,每一块的内存分配是怎么变化的,这才更重要!

看下面的函数们:

 

> : alloc_skb()函数

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. static inline struct sk_buff *alloc_skb(unsigned int size,  
  2.                                          gfp_t priority)  
  3. {  
  4.          return __alloc_skb(size, priority, 0);  
  5. }  

 

 

其实看__alloc_skb函数:

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,  
  2.                              int fclone)  
  3. {  
  4.          kmem_cache_t *cache;  
  5.          struct skb_shared_info *shinfo;  
  6.          struct sk_buff *skb;  
  7.          u8 *data;  
  8.    
  9.          cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;    // 根据克隆状态来判断在哪一个缓冲区进行分配cache  
  10.    
  11.          /* Get the HEAD */  
  12.          skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);        // 得到skb,注意这里没有包含数据,仅仅是skb_buff这个结构体  
  13.          if (!skb)  
  14.                  goto out;  
  15.    
  16.          /* Get the DATA. Size must match skb_add_mtu(). */  
  17.          size = SKB_DATA_ALIGN(size);                                     // 获得线性数据分片长度(注意对齐)  
  18.          data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); // 注意分配的是什么,是size + skb_shared_info!!!!!  
  19.          if (!data)  
  20.                  goto nodata;  
  21.    
  22.          memset(skb, 0, offsetof(struct sk_buff, truesize));          // 初始化  
  23.          skb->truesize = size + sizeof(struct sk_buff);               // 实际大小等于sk_buff + size,刚刚开始还没有非线性数据  
  24.          atomic_set(&skb->users, 1);                                    
  25.          skb->head = data;                                            // 注意指针,这个结合上面的图一清二楚  
  26.          skb->data = data;  
  27.          skb->tail = data;  
  28.          skb->end  = data + size;  
  29.          /* make sure we initialize shinfo sequentially */  
  30.          shinfo = skb_shinfo(skb);  
  31.          atomic_set(&shinfo->dataref, 1);  
  32.          shinfo->nr_frags  = 0;  
  33.          shinfo->tso_size = 0;  
  34.          shinfo->tso_segs = 0;  
  35.          shinfo->ufo_size = 0;  
  36.          shinfo->ip6_frag_id = 0;  
  37.          shinfo->frag_list = NULL;  
  38.    
  39.          if (fclone) {  
  40.                  struct sk_buff *child = skb + 1;  
  41.                  atomic_t *fclone_ref = (atomic_t *) (child + 1);  
  42.    
  43.                  skb->fclone = SKB_FCLONE_ORIG;  
  44.                  atomic_set(fclone_ref, 1);  
  45.    
  46.                  child->fclone = SKB_FCLONE_UNAVAILABLE;  
  47.          }  
  48. out:  
  49.          return skb;  
  50. nodata:  
  51.          kmem_cache_free(cache, skb);  
  52.          skb = NULL;  
  53.          goto out;  
  54. }  

 

 

那么alloc之后的图就是(图五):

                                               Linux 内核网络协议栈

                                                                                          (图五)

其实和图二是一样的!我们可以看到,现在仅仅是分配了线束数据区域,但是现在还没有数据!一定要注意!所以前面三个指针指在一起!因为没有数据,那么len和data_len的值就是0 !

 

> : skb_reserve函数

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. static inline void skb_reserve(struct sk_buff *skb, int len)  
  2. {  
  3.          skb->data += len;  
  4.          skb->tail += len;  
  5.  }  

 

 

代码其实很easy、就是移动两个指针而已~

 

这个函数很重要,是为“协议头”预留空间!而且是尽最大的空间预留,因为很多头都会有可选项,那么我们不知道可选项是多大,所以只能是按照最大的分配,那么也说明了一点,预留的空间headroom也就是不一定都能使用完的!可能还有剩余的,由上面的图也可以看出来!这也是为什么需要这么多指针的问题!那么这个函数直接导致head指针和tail、data指针分离,入下面图六所示:

                                           Linux 内核网络协议栈

                                                                                           (图六)

 

注意headroom就是用来存储各个协议头的足够大的空间,tailroom就可以认为是存储其他线性数据的空间。( 这里不要曲解协议头不是线性数据,其实协议头也是!!!所以当增加头的时候,data指针向上移动,当增加其他数据的时候,tail指针向下移动 )。现在data和tail指向一起,那么还是说明数据没有!!!

 

> : skb_put函数 ----> 用于操作线性数据区域(tailroom区域)的用户数据

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)  
  2. {  
  3.          unsigned char *tmp = skb->tail;  
  4.          SKB_LINEAR_ASSERT(skb);            
  5.          skb->tail += len;                 // 移动指针  
  6.          skb->len  += len;                 // 数据空间增大len  
  7.          if (unlikely(skb->tail>skb->end)) // 如果tail指针超过end指针了,那么处理错误~  
  8.                  skb_over_panic(skb, len, current_text_addr());  
  9.          return tmp;  
  10. }  



 

这函数其实就是从tailroom预留空间,相当于是移动tail指针,这样如果从上图(图六)开始看,也就是tail开始向下移动,和data分离了。。。一般来说,这样做都是为了用户数据再次处理,或者说为TCP/IP的负载预留空间!

看图七,当使用skb_put时候,由图六---->图七

                                                  Linux 内核网络协议栈

                                                                                          (图七)

我们可以看到指针的移动data还是在headroom的下面,中间的是用户数据预留的部分,由skb_put得到,tail表示数据结尾!再看一下sk_buff中的len,变成了数据长度ld!!

 

> : skb_push函数:----------> 用于操作headroom区域的协议头

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)  
  2. {  
  3.          skb->data -= len;      // 向上移动指针  
  4.          skb->len  += len;      // 数据长度增加  
  5.          if (unlikely(skb->data<skb->head))  // data指针超过head那么就是处理错误~  
  6.                  skb_under_panic(skb, len, current_text_addr());  
  7.          return skb->data;  
  8. }  

 

 

和skb_put对应,上面试操作用户数据的,这里是操作协议头的!其实就是data指针向上移动而已~注意len增大了哦~前面说了协议头也是属于数据!

如下面图所示,由图七---->图八

                                           Linux 内核网络协议栈

                                                                                        (图八)

 

我们可以知道,data向上移动了,同时注意len变成ld+lp了,其中lp是这个增加的协议头的长度!

 

> : skb_pull函数:-----------> 其实这个函数才是与skb_push函数对应的函数!因为这是去头函数,而skb_push是增头函数!所以这个函数一般用在解包的时候!

 

[cpp] view plain copy  print?Linux 内核网络协议栈Linux 内核网络协议栈
  1. static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)  
  2. {  
  3.          return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);  
  4. }  
  5.    
  6.    
  7. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)  
  8. {  
  9.          if (len > skb_headlen(skb) &&  
  10.              !__pskb_pull_tail(skb, len-skb_headlen(skb)))  
  11.                  return NULL;  
  12.          skb->len -= len;                              // 长度减小  
  13.          return skb->data += len;                      // 移动指针  
  14. }  

 

 

其实就是data指针向下移动,当前一个协议头被去掉,headroom剩余的空间增大了!看下图:

由图八---->图九:

                                                     Linux 内核网络协议栈

                                                                                      (图九)

 

虚线是data之前的指针位置,现在移动到下面实线!!需注意:len的长度减小,减小的大小是剥去的头的大小!!

 

四、

最后我们从两条线整体分析一下:

1:从应用层用户数据开始,直到物理层发送出去

      > 初始化的什么就不多说了,和前面的差不多,现在也加入用户数据已经在了,如图七所示一样!那么到了TCP层,需要增加

         TCP层的头:

         如图10所示:

                                                   Linux 内核网络协议栈

                                                                                                  (图10)

 

            需要注意的是这里是传输层,那么传输层的结构u中的th代表的是tcp的头,那么tcp指向tcp头OK!同时注意 len长度+=l1 哦~~~

        > 再看到了IP层:如图11

                                                   Linux 内核网络协议栈

                                                                                                 (图11)

 

                至于需要解释什么就没什么了,都是一样的~

             > 到链路层了:如图12

                                                     Linux 内核网络协议栈

                                                                                             (图12)

 

  OK!

 

2:第二个过程其实是第一个逆过程,都差不多,所以不多说了~

 

五、

最后看一下操作skb的两个函数pskb_copy和skb_copy

前者仅仅是将sk_buff的结构体和线性数据copy过来,对于非线性数据,是引用原始的skb的数据的!而后者是不仅将sk_buff和线性数据拷贝,同时将非线性数据也copy了一份,看下面就明白了!这就在效率上就差了很多!所以如果不想修改数据,那么还是使用pskb_copy更好!

 

对于pskb_copy:

Linux 内核网络协议栈

 

对于skb_copy:

Linux 内核网络协议栈

 

OK  我觉得差不多了~~~~~结束~~~~~~~~~~~~~