MRJobConfig
public static fina COMBINE_CLASS_ATTR
属性COMBINE_CLASS_ATTR = "mapreduce.job.combine.class"
————子接口(F4) JobContent
方法getCombinerClass
————子实现类 JobContextImpl
实现getCombinerClass方法:
public Class<? extends Reducer<?,?,?,?>> getCombinerClass()
throws ClassNotFoundException {
return (Class<? extends Reducer<?,?,?,?>>)
conf.getClass(COMBINE_CLASS_ATTR, null);
}
因为JobContextImpl是MRJobConfig子类
所以得到了父类MRJobConfig的COMBINE_CLASS_ATTR属性
————子类Job
public void setCombinerClass(Class<? extends Reducer> cls
) throws IllegalStateException {
ensureState(JobState.DEFINE);
conf.setClass(COMBINE_CLASS_ATTR, cls, Reducer.class);
}
因为JobContextImpl是MRJobConfig子类,
而Job是JobContextImpl的子类
所以也有COMBINE_CLASS_ATTR属性
通过setCombinerClass设置了父类MRJobConfig的属性
MRJobConfig
————子接口JobContent
方法getCombinerClass
————子实现类 JobContextImpl
————子类 Job
————子实现类 TaskAttemptContext
继承了方法getCombinerClass
Task
$CombinerRunner(Task的内部类)
该内部类有方法create:
public static <K,V> CombinerRunner<K,V> create(JobConf job,
TaskAttemptID taskId,
Counters.Counter inputCounter,
TaskReporter reporter,
org.apache.hadoop.mapreduce.OutputCommitter committer
) throws ClassNotFoundException
{
Class<? extends Reducer<K,V,K,V>> cls =
(Class<? extends Reducer<K,V,K,V>>) job.getCombinerClass();
if (cls != null) {
return new OldCombinerRunner(cls, job, inputCounter, reporter);
}
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, taskId,
reporter);
Class<? extends org.apache.hadoop.mapreduce.Reducer<K,V,K,V>> newcls =
(Class<? extends org.apache.hadoop.mapreduce.Reducer<K,V,K,V>>)
taskContext.getCombinerClass();
if (newcls != null) {
return new NewCombinerRunner<K,V>(newcls, job, taskId, taskContext,
inputCounter, reporter, committer);
}
return null;
}
其中这一段应该是旧的API
Class<? extends Reducer<K,V,K,V>> cls =
(Class<? extends Reducer<K,V,K,V>>) job.getCombinerClass();
if (cls != null) {
return new OldCombinerRunner(cls, job, inputCounter, reporter);
}
而这个是新的API
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, taskId,
reporter);
Class<? extends org.apache.hadoop.mapreduce.Reducer<K,V,K,V>> newcls =
(Class<? extends org.apache.hadoop.mapreduce.Reducer<K,V,K,V>>)
taskContext.getCombinerClass();
if (newcls != null) {
return new NewCombinerRunner<K,V>(newcls, job, taskId, taskContext,
inputCounter, reporter, committer);
}
return null;
(不知道为什么要写全名,去掉那些包名、向上/下转型和各种泛型的话,看起来就会清晰很多?)
而TaskAttemptContext是JobContent的子实现类,所以继承了getCombinerClass方法
而且,这里用的是多态,其调用的是子实现类TaskAttemptContextImpl的getCombinerClass方法
(TaskAttemptContextImpl继承了JobContextImpl,而JobContextImpl实现了该方法)
所以最终get到了属性COMBINE_CLASS_ATTR,即得到了我们通过job.setCombinerClass的xxxC
而这个xxxC是给了newcls,而newcls是给了NewCombinerRunner的构造函数的reducerClassc参数
NewCombinerRunner(Class reducerClass,
JobConf job,
org.apache.hadoop.mapreduce.TaskAttemptID taskId,
org.apache.hadoop.mapreduce.TaskAttemptContext context,
Counters.Counter inputCounter,
TaskReporter reporter,
org.apache.hadoop.mapreduce.OutputCommitter committer)
{
super(inputCounter, job, reporter);
this.reducerClass = reducerClass;
this.taskId = taskId;
keyClass = (Class<K>) context.getMapOutputKeyClass();
valueClass = (Class<V>) context.getMapOutputValueClass();
comparator = (RawComparator<K>) context.getCombinerKeyGroupingComparator();
this.committer = committer;
}
Task
MapTask
$MapOutputBuffer
private CombinerRunner<K,V> combinerRunner;
$SpillThread类($表示内部类)
combinerRunner = CombinerRunner.create(job, getTaskID(),
combineInputCounter,
reporter, null);
//此时,我们得到了设置好的合并类
if (combinerRunner == null) {
// spill directly
DataInputBuffer key = new DataInputBuffer();
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
final int kvoff = offsetFor(spindex % maxRec);
int keystart = kvmeta.get(kvoff + KEYSTART);
int valstart = kvmeta.get(kvoff + VALSTART);
key.reset(kvbuffer, keystart, valstart - keystart);
getVBytesForOffset(kvoff, value);
writer.append(key, value);
++spindex;
}
} else {
int spstart = spindex;
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec)
+ PARTITION) == i) {
++spindex;
}
// Note: we would like to avoid the combiner if we've fewer
// than some threshold of records for a partition
if (spstart != spindex) {
combineCollector.setWriter(writer);
RawKeyValueIterator kvIter =
new MRResultIterator(spstart, spindex);
combinerRunner.combine(kvIter, combineCollector);
}
}
再查看combine函数
在Task的内部类NewCombinerRunner下
public void combine(RawKeyValueIterator iterator,
OutputCollector<K,V> collector)
throws IOException, InterruptedException,ClassNotFoundException
{
// make a reducer
org.apache.hadoop.mapreduce.Reducer<K,V,K,V> reducer =
(org.apache.hadoop.mapreduce.Reducer<K,V,K,V>)
ReflectionUtils.newInstance(reducerClass, job);
org.apache.hadoop.mapreduce.Reducer.Context
reducerContext = createReduceContext(reducer, job, taskId,
iterator, null, inputCounter,
new OutputConverter(collector),
committer,
reporter, comparator, keyClass,
valueClass);
reducer.run(reducerContext);
}
上面的reducerClass就是我们传入的xxxC
最终是通过反射创建了一个xxxC对象,并将其强制向上转型为Reducer实例对象,
然后调用了向上转型后对象的run方法(当前的xxxC没有run方法,调用的是父类Reduce的run)
在类Reducer中,run方法如下
/**
* Advanced application writers can use the
* {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to
* control how the reduce task works.
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
// If a back up store is used, reset it
Iterator<VALUEIN> iter = context.getValues().iterator();
if(iter instanceof ReduceContext.ValueIterator) {
((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();
}
}
} finally {
cleanup(context);
}
}
有由于多态,此时调用的reduce是子类xxxC中的reduce方法
(多态态性质:子类复写了该方法,则实际上执行的是子类中的该方法)
所以说,我们自定义combine用的类的时候,应该继承Reducer类,并且复写reduce方法
且其输入形式:(以wordcount为例)
reduce(Text key, Iterable<IntWritable> values, Context context)
其中key是单词个数,而values是个数列表,也就是value1、value2........
注意,此时已经是列表,即<键,list<值1、值2、值3.....>>
(之所以得到这个结论,是因为我当时使用的combine类是WCReduce,
即Reduce和combine所用的类是一样的,通过对代码的分析,传入值的结构如果是<lkey,value>的话,是不可能做到combine的啊——即所谓的对相同值合并,求计数的累积和,这根本就是两个步骤,对key相同的键值对在map端就进行了一次合并了,合并成了<key,value list>,然后才轮到combine接受直接换个形式的输入,并处理——我们的处理是求和,然后再输出到context,进入reduce端的shuffle过程。
然后我在reduce中遍历了用syso输出
结果发现是0,而这实际上是因为经过一次遍历,我的指针指向的位置就不对了啊,
)
嗯,自己反复使用以下的代码,不断的组合、注释,去测试吧~就会得出这样的结论了
/reduce
publicstaticclassWCReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
private final IntWritableValueOut=newIntWritable();
@Override
protectedvoid reduce(Text key,Iterable<IntWritable> values,
Context context) throws IOException,InterruptedException{
for(IntWritable value : values){
System.out.println(value.get()+"--");
}
// int total = 0 ;
// for (IntWritable value : values) {
// total += value.get();
// }
// ValueOut.set(total);
// context.write(key, ValueOut);
}
}
job.setCombinerClass(WCReduce.class);