目录:
gc之四--Minor GC、Major GC和Full GC之间的区别
堆内存划分为 Eden、Survivor 和 Tenured/Old 空间
Minor GC
从年轻代空间(包括 Eden 和 Survivor 区域)回收内存被称为 Minor GC。这一定义既清晰又易于理解。但是,当发生Minor GC事件的时候,有一些有趣的地方需要注意到:
- 当 JVM 无法为一个新的对象分配空间时会触发 Minor GC,比如当 Eden 区满了。所以分配率越高,越频繁执行 Minor GC。
- 内存池被填满的时候,其中的内容全部会被复制,指针会从0开始跟踪空闲内存。Eden 和 Survivor 区进行了标记和复制操作,取代了经典的标记、扫描、压缩、清理操作。所以 Eden 和 Survivor 区不存在内存碎片。写指针总是停留在所使用内存池的顶部。
- 执行 Minor GC 操作时,不会影响到永久代。从永久代到年轻代的引用被当成 GC roots,从年轻代到永久代的引用在标记阶段被直接忽略掉。
- 质疑常规的认知,所有的 Minor GC 都会触发“全世界的暂停(stop-the-world)”,停止应用程序的线程。对于大部分应用程序,停顿导致的延迟都是可以忽略不计的。其中的真相就是,大部分 Eden 区中的对象都能被认为是垃圾,永远也不会被复制到 Survivor 区或者老年代空间。如果正好相反,Eden 区大部分新生对象不符合 GC 条件,Minor GC 执行时暂停的时间将会长很多。
所以 Minor GC 的情况就相当清楚了——每次 Minor GC 会清理年轻代的内存。
Major GC vs Full GC
大家应该注意到,目前,这些术语无论是在 JVM 规范还是在垃圾收集研究论文中都没有正式的定义。但是我们一看就知道这些在我们已经知道的基础之上做出的定义是正确的,Minor GC 清理年轻带内存应该被设计得简单:
- Major GC 是清理老年代。
- Full GC 是清理整个堆空间—包括年轻代、老年代及永久代(元数据空间)。
很不幸,实际上它还有点复杂且令人困惑。首先,许多 Major GC 是由 Minor GC 触发的,所以很多情况下将这两种 GC 分离是不太可能的。另一方面,许多现代垃圾收集机制会清理部分永久代空间,所以使用“cleaning”一词只是部分正确。
这使得我们不用去关心到底是叫 Major GC 还是 Full GC,大家应该关注当前的 GC 是否停止了所有应用程序的线程,还是能够并发的处理而不用停掉应用程序的线程。
这种混乱甚至内置到 JVM 标准工具。下面一个例子很好的解释了我的意思。让我们比较两个不同的工具 Concurrent Mark 和 Sweep collector (-XX:+UseConcMarkSweepGC)在 JVM 中运行时输出的跟踪记录。
第一次尝试通过 jstat 输出:
1
|
my-precious: me$ jstat -gc -t 4235 1s |
1
2
3
4
5
6
7
8
9
10
11
12
13
|
Time S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT 5.7 34048.0 34048.0 0.0 34048.0 272640.0 194699.7 1756416.0 181419.9 18304.0 17865.1 2688.0 2497.6 3 0.275 0 0.000 0.275
6.7 34048.0 34048.0 34048.0 0.0 272640.0 247555.4 1756416.0 263447.9 18816.0 18123.3 2688.0 2523.1 4 0.359 0 0.000 0.359
7.7 34048.0 34048.0 0.0 34048.0 272640.0 257729.3 1756416.0 345109.8 19072.0 18396.6 2688.0 2550.3 5 0.451 0 0.000 0.451
8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0 444982.5 19456.0 18681.3 2816.0 2575.8 7 0.550 0 0.000 0.550
9.7 34048.0 34048.0 34046.7 0.0 272640.0 16777.0 1756416.0 587906.3 20096.0 19235.1 2944.0 2631.8 8 0.720 0 0.000 0.720
10.7 34048.0 34048.0 0.0 34046.2 272640.0 80171.6 1756416.0 664913.4 20352.0 19495.9 2944.0 2657.4 9 0.810 0 0.000 0.810 11.7 34048.0 34048.0 34048.0 0.0 272640.0 129480.8 1756416.0 745100.2 20608.0 19704.5 2944.0 2678.4 10 0.896 0 0.000 0.896 12.7 34048.0 34048.0 0.0 34046.6 272640.0 164070.7 1756416.0 822073.7 20992.0 19937.1 3072.0 2702.8 11 0.978 0 0.000 0.978 13.7 34048.0 34048.0 34048.0 0.0 272640.0 211949.9 1756416.0 897364.4 21248.0 20179.6 3072.0 2728.1 12 1.087 1 0.004 1.091 14.7 34048.0 34048.0 0.0 34047.1 272640.0 245801.5 1756416.0 597362.6 21504.0 20390.6 3072.0 2750.3 13 1.183 2 0.050 1.233 15.7 34048.0 34048.0 0.0 34048.0 272640.0 21474.1 1756416.0 757347.0 22012.0 20792.0 3200.0 2791.0 15 1.336 2 0.050 1.386 16.7 34048.0 34048.0 34047.0 0.0 272640.0 48378.0 1756416.0 838594.4 22268.0 21003.5 3200.0 2813.2 16 1.433 2 0.050 1.484 |
这个片段是 JVM 启动后第17秒提取的。基于该信息,我们可以得出这样的结果,运行了12次 Minor GC、2次 Full GC,时间总跨度为50毫秒。通过 jconsole 或者 jvisualvm 这样的基于GUI的工具你能得到同样的结果。
1
|
java -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs] 4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs] ... cut for brevity ...
11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 secs] 12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 secs] 12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 secs] 13.098: [GC (CMS Initial Mark) [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), 0.0041705 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 13.102: [CMS-concurrent-mark-start] 13.341: [CMS-concurrent-mark: 0.238 /0 .238 secs] [Times: user=0.36 sys=0.01, real=0.24 secs]
13.341: [CMS-concurrent-preclean-start] 13.350: [CMS-concurrent-preclean: 0.009 /0 .009 secs] [Times: user=0.03 sys=0.00, real=0.01 secs]
13.350: [CMS-concurrent-abortable-preclean-start] 13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 secs] 14.366: [CMS-concurrent-abortable-preclean: 0.917 /1 .016 secs] [Times: user=2.22 sys=0.07, real=1.01 secs]
14.366: [GC (CMS Final Remark) [YG occupancy: 182593 K (306688 K)]14.366: [Rescan (parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), 0.0462010 secs] [Times: user=0.14 sys=0.00, real=0.05 secs] 14.412: [CMS-concurrent-sweep-start] 14.633: [CMS-concurrent-sweep: 0.221 /0 .221 secs] [Times: user=0.37 sys=0.00, real=0.22 secs]
14.633: [CMS-concurrent-reset-start] 14.636: [CMS-concurrent-reset: 0.002 /0 .002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
|
在点头同意这个结论之前,让我们看看来自同一个 JVM 启动收集的垃圾收集日志的输出。显然- XX:+ PrintGCDetails 告诉我们一个不同且更详细的故事:
基于这些信息,我们可以看到12次 Minor GC 后开始有些和上面不一样了。没有运行两次 Full GC,这不同的地方在于单个 GC 在永久代中不同阶段运行了两次:
- 最初的标记阶段,用了0.0041705秒也就是4ms左右。这个阶段会暂停“全世界( stop-the-world)”的事件,停止所有应用程序的线程,然后开始标记。
- 并行执行标记和清洗阶段。这些都是和应用程序线程并行的。
- 最后 Remark 阶段,花费了0.0462010秒约46ms。这个阶段会再次暂停所有的事件。
- 并行执行清理操作。正如其名,此阶段也是并行的,不会停止其他线程。
所以,正如我们从垃圾回收日志中所看到的那样,实际上只是执行了 Major GC 去清理老年代空间而已,而不是执行了两次 Full GC。
如果你是后期做决 定的话,那么由 jstat 提供的数据会引导你做出正确的决策。它正确列出的两个暂停所有事件的情况,导致所有线程停止了共计50ms。但是如果你试图优化吞吐量,你会被误导的。清 单只列出了回收初始标记和最终 Remark 阶段,jstat的输出看不到那些并发完成的工作。
Mixed GC
是在G1收集器中独有的,用于收集整个young gen以及部分old gen的GC。
结论
- Minor GC 从年轻代空间(包括 Eden 和 Survivor 区域)回收内存。
- Major GC 是清理老年代。
- Mixed GC 是在G1收集器中独有的,用于收集整个young gen以及部分old gen的GC。
- Full GC 是清理整个堆空间—包括年轻代、老年代及永久代(元数据空间)。
考虑到这种情况,最好避免以 Minor、Major、Full GC 这种方式来思考问题。而应该监控应用延迟或者吞吐量,然后将 GC 事件和结果联系起来。
随着这些 GC 事件的发生,你需要额外的关注某些信息,GC 事件是强制所有应用程序线程停止了还是并行的处理了部分事件。
针对HotSpot VM的实现,它里面的GC其实准确分类只有两大种:
- Partial GC:并不收集整个GC堆的模式
- Young GC:只收集young gen的GC
- Old GC:只收集old gen的GC。只有CMS的concurrent collection是这个模式
- Mixed GC:收集整个young gen以及部分old gen的GC。只有G1有这个模式
- Full GC:收集整个堆,包括young gen、old gen、perm gen(如果存在的话)等所有部分的模式。
Major GC通常是跟full GC是等价的,收集整个GC堆。但因为HotSpot VM发展了这么多年,外界对各种名词的解读已经完全混乱了,当有人说“major GC”的时候一定要问清楚他想要指的是上面的full GC还是old gen。
最简单的分代式GC策略,按HotSpot VM的serial GC的实现来看,触发条件是:
- young GC:当young gen中的eden区分配满的时候触发。注意young GC中有部分存活对象会晋升到old gen,所以young GC后old gen的占用量通常会有所升高。
- full GC:当准备要触发一次young GC时,如果发现统计数据说之前young GC的平均晋升大小比目前old gen剩余的空间大,则不会触发young GC而是转为触发full GC(因为HotSpot VM的GC里,除了CMS的concurrent collection之外,其它能收集old gen的GC都会同时收集整个GC堆,包括young gen,所以不需要事先触发一次单独的young GC);或者,如果有perm gen的话,要在perm gen分配空间但已经没有足够空间时,也要触发一次full GC;或者System.gc()、heap dump带GC,默认也是触发full GC。
HotSpot VM里其它非并发GC的触发条件复杂一些,不过大致的原理与上面说的其实一样。 当然也总有例外。Parallel Scavenge(-XX:+UseParallelGC)框架下,默认是在要触发full GC前先执行一次young GC,并且两次GC之间能让应用程序稍微运行一小下,以期降低full GC的暂停时间(因为young GC会尽量清理了young gen的死对象,减少了full GC的工作量)。这是HotSpot VM里的奇葩嗯。 并发GC的触发条件就不太一样。以CMS GC为例,它主要是定时去检查old gen的使用量,当使用量超过了触发比例就会启动一次CMS GC,对old gen做并发收集。
gc之六--Minor GC、Major GC、Full GC以及Mixed GC之间的区别的更多相关文章
-
Minor GC、Major GC和Full GC之间的区别(转)
在 Plumbr 从事 GC 暂停检测相关功能的工作时,我*用自己的方式,通过大量文章.书籍和演讲来介绍我所做的工作.在整个过程中,经常对 Minor.Major.和 Full GC 事件的使用感到 ...
-
Minor GC、Major GC和Full GC之间的区别
在 Plumbr 从事 GC 暂停检测相关功能的工作时,我*用自己的方式,通过大量文章.书籍和演讲来介绍我所做的工作.在整个过程中,经常对 Minor.Major.和 Full GC 事件的使用感到 ...
-
gc之四--Minor GC、Major GC和Full GC之间的区别
针对HotSpot VM的实现,它里面的GC其实准确分类只有两大种: Partial GC:并不收集整个GC堆的模式 Young GC:只收集young gen的GC Old GC:只收集old ge ...
-
GC之六--SystemGC完全解读
概述 JVM的GC一般情况下是JVM本身根据一定的条件触发的,不过我们还是可以做一些人为的触发,比如通过jvmti做强制GC,通过System.gc触发,还可以通过jmap来触发等,针对每个场景其实我 ...
-
在JVM中,新生代和旧生代有何区别?GC的回收方式有几种?server和client有和区别?
在JVM中,新生代和旧生代有何区别?GC的回收方式有几种?server和client有和区别? 2014-04-12 12:09 7226人阅读 评论(0) 收藏 举报 分类: J2SE(5) 一 ...
-
Java12新特性 -- 可中断的 G1 Mixed GC
G1是一个垃圾收集器,设计用于具有大量内存的多处理器机器.由于它提高了性能效率,G1垃圾收集器最终将取代CMS垃圾收集器. 该垃圾收集器设计的主要目标之一是满足用户设置的预期的 JVM 停顿时间. G ...
-
GC是如何判断一个对象为";垃圾";的?被GC判断为";垃圾";的对象一定会被回收吗?
一.GC如何判断一个对象为”垃圾”的java堆内存中存放着几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”.那么GC具体通过什么手段来 ...
-
What are the differences between small, minor, and major updates?
Following contents are excerpted from the this website and only used for knowledge sharing: Install ...
-
Java GC相关知识
Java堆的分类 分为两类:YoungGen和OldGen.其中,YoungGen分为三部分:eden,from survivor和to survivor,比例默认是:8:1:1 PermGen不属于 ...
随机推荐
-
ADF_ADF Faces系列4_ADF数据可视化组件简介之建立BarChart/Gauge/ExportExcel
2013-05-01 Created By BaoXinjian
-
Spark Streaming 架构
图 1 Spark Streaming 架构图 组件介绍: Network Input Tracker : 通 过 接 收 器 接 收 流 数 据, 并 将 流 数 据 映 射 为 输 入DSt ...
-
FireMonkey下的异形窗体拖动(句柄转换)
DelphiXE2 Firemoney FMX 的窗体不只是为windows的, 所以很多功能都没有了. 最常见的就是拖拽了 先看 VCL时代 一个经典拖动代码 ReleaseCapture(); S ...
-
python os.remove
remove 只能删除文件,删除目录会报错 >>> import os >>> os.remove("/opt/xxx/server_log/test&q ...
-
C++的string类型和继承C语言风格的字符串的区别与注意事项
1.尽可能地在C++程序中使用string,不要使用继承而来的C语言风格的字符串,会出现许多安全问题. 2.C语言的字符串风格,是以空字符结束的,在C++的头文件cstring中定义了C语言风格的字符 ...
-
uboot下emmc内容烧写(拷贝)步骤
一.目的:嵌入式开发板,通过emmc上的内核文件加载启动linux操作系统,以及存放其他程序文件.需要将所需文件先写入emmc中. 二.总体步骤是:uboot启动后,进入linux下,将emmc分区并 ...
-
pickle 在python2 to python3 编码出现错误
pickle.load(file) UnicodeDecodeError: 'ascii' codec can't decode byte 0xf5 in position 2: ordinal no ...
-
使用Navicat连接Mysql报错:can not get hostname for your address
以管理员的身份使用cmd命令运行netsh winsock reset即可!
-
【 Zabbix 】— Tomcat监控及故障重启服务
一.监控tomcat原理 zabbix_server开启java poller,zabbix_java开启JavaGateway, 端口为:10052,tomcat JMX开启12345提供性能数据. ...
-
通过java api提交自定义hadoop 作业
通过API操作之前要先了解几个基本知识 一.hadoop的基本数据类型和java的基本数据类型是不一样的,但是都存在对应的关系 如下图 如果需要定义自己的数据类型,则必须实现Writable hado ...