在Python3中,通过threading模块提供线程的功能。原来的thread模块已废弃。但是threading模块中有个Thread类(大写的T,类名),是模块中最主要的线程类,一定要分清楚了,千万不要搞混了。
threading模块提供了一些比较实用的方法或者属性,例如:
方法与属性 | 描述 |
---|---|
current_thread() | 返回当前线程 |
active_count() | 返回当前活跃的线程数,1个主线程+n个子线程 |
get_ident() | 返回当前线程 |
enumerater() | 返回当前活动 Thread 对象列表 |
main_thread() | 返回主 Thread 对象 |
settrace(func) | 为所有线程设置一个 trace 函数 |
setprofile(func) | 为所有线程设置一个 profile 函数 |
stack_size([size]) | 返回新创建线程栈大小;或为后续创建的线程设定栈大小为 size |
TIMEOUT_MAX | Lock.acquire(), RLock.acquire(), Condition.wait() 允许的最大超时时间 |
threading模块包含下面的类:
- Thread:基本线程类
- Lock:互斥锁
- RLock:可重入锁,使单一进程再次获得已持有的锁(递归锁)
- Condition:条件锁,使得一个线程等待另一个线程满足特定条件,比如改变状态或某个值。
- Semaphore:信号锁。为线程间共享的有限资源提供一个”计数器”,如果没有可用资源则会被阻塞。
- Event:事件锁,任意数量的线程等待某个事件的发生,在该事件发生后所有线程被激活
- Timer:一种计时器
- Barrier:Python3.2新增的“阻碍”类,必须达到指定数量的线程后才可以继续执行。
1. 多线程
有两种方式来创建线程:一种是继承Thread类,并重写它的run()方法;另一种是在实例化threading.Thread
对象的时候,将线程要执行的任务函数作为参数传入线程。
第一种方法:
import threading class MyThread(threading.Thread):
def __init__(self, thread_name):
# 注意:一定要显式的调用父类的初始化函数。
super(MyThread, self).__init__(name=thread_name) def run(self):
print("%s正在运行中......" % self.name) if __name__ == '__main__':
for i in range(10):
MyThread("thread-" + str(i)).start()
第二种方法:
import threading
import time def show(arg):
time.sleep(1)
print('thread '+str(arg)+" running....") if __name__ == '__main__':
for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start()
对于Thread类,它的定义如下:
threading.Thread(self, group=None, target=None, name=None,
args=(), kwargs=None, *, daemon=None)
- 参数group是预留的,用于将来扩展;
- 参数target是一个可调用对象,在线程启动后执行;
- 参数name是线程的名字。默认值为“Thread-N“,N是一个数字。
- 参数args和kwargs分别表示调用target时的参数列表和关键字参数。
Thread类定义了以下常用方法与属性:
方法与属性 | 说明 |
---|---|
start() | 启动线程,等待CPU调度 |
run() | 线程被cpu调度后自动执行的方法 |
getName()、setName()和name | 用于获取和设置线程的名称。 |
setDaemon() | 设置为后台线程或前台线程(默认是False,前台线程)。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止。如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程执行完成后,程序才停止。 |
ident | 获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。 |
is_alive() | 判断线程是否是激活的(alive)。从调用start()方法启动线程,到run()方法执行完毕或遇到未处理异常而中断这段时间内,线程是激活的。 |
isDaemon()方法和daemon属性 | 是否为守护线程 |
join([timeout]) | 调用该方法将会使主调线程堵塞,直到被调用线程运行结束或超时。参数timeout是一个数值类型,表示超时时间,如果未提供该参数,那么主调线程将一直堵塞到被调线程结束。 |
在多线程执行过程中,有一个特点要注意,那就是每个线程各执行各的任务,不等待其它的线程,自顾自的完成自己的任务,比如下面的例子:
import time
import threading def doWaiting():
print('start waiting:', time.strftime('%H:%M:%S'))
time.sleep(3)
print('stop waiting', time.strftime('%H:%M:%S')) t = threading.Thread(target=doWaiting)
t.start()
# 确保线程t已经启动
time.sleep(1)
print('start job')
print('end job')
执行结果是:
start waiting: 10:50:35
start job
end job
stop waiting 10:50:38
Python默认会等待最后一个线程执行完毕后才退出。上面例子中,主线程没有等待子线程t执行完毕,而是啥都不管,继续往下执行它自己的代码,执行完毕后也没有结束整个程序,而是等待子线程t执行完毕,整个程序才结束。
有时候我们希望主线程等等子线程,不要“埋头往前跑”。那要怎么办?使用join()方法!如下所示:
import time
import threading def doWaiting():
print('start waiting:', time.strftime('%H:%M:%S'))
time.sleep(3)
print('stop waiting', time.strftime('%H:%M:%S')) t = threading.Thread(target=doWaiting)
t.start()
# 确保线程t已经启动
time.sleep(1)
print('start join')
# 将一直堵塞,直到t运行结束。
t.join()
print('end join')
执行结果:
start waiting: 10:54:03
start join
stop waiting 10:54:06
end join
我们还可以使用setDaemon(True)
把所有的子线程都变成主线程的守护线程,当主线程结束后,守护子线程也会随之结束,整个程序也跟着退出。
import threading
import time def run():
print(threading.current_thread().getName(), "开始工作")
time.sleep(2) # 子线程停2s
print("子线程工作完毕") for i in range(3):
t = threading.Thread(target=run,)
t.setDaemon(True) # 把子线程设置为守护线程,必须在start()之前设置
t.start() time.sleep(1) # 主线程停1秒
print("主线程结束了!")
print(threading.active_count()) # 输出活跃的线程数
执行结果:
Thread-1 开始工作
Thread-2 开始工作
Thread-3 开始工作
主线程结束了!
4
2. 自定义线程类
对于threading模块中的Thread类,本质上是执行了它的run方法。因此可以自定义线程类,让它继承Thread类,然后重写run方法。
import threading class MyThreading(threading.Thread): def __init__(self, func, arg):
super(MyThreading,self).__init__()
self.func = func
self.arg = arg def run(self):
self.func(self.arg) def my_func(args):
"""
你可以把任何你想让线程做的事定义在这里
"""
pass obj = MyThreading(my_func, 123)
obj.start()
3.线程锁
由于线程之间的任务执行是CPU进行随机调度的,并且每个线程可能只执行了n条指令之后就被切换到别的线程了。当多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,这被称为“线程不安全”。为了保证数据安全,我们设计了线程锁,即同一时刻只允许一个线程操作该数据。线程锁用于锁定资源,可以同时使用多个锁,当你需要独占某一资源时,任何一个锁都可以锁这个资源,就好比你用不同的锁都可以把相同的一个箱子锁住是一个道理。
我们先看一下没有锁的情况下,脏数据是如何产生的。
import threading
import time number = 0 def plus():
global number # global声明此处的number是外面的全局变量number
for _ in range(1000000): # 进行一个大数级别的循环加一运算
number += 1
print("子线程%s运算结束后,number = %s" % (threading.current_thread().getName(), number)) for i in range(2): # 用2个子线程,就可以观察到脏数据
t = threading.Thread(target=plus)
t.start() time.sleep(2) # 等待2秒,确保2个子线程都已经结束运算。
print("主线程执行完毕后,number = ", number)
执行结果(每次数值可能都不一样):
子线程Thread-2运算结束后,number = 1144974
子线程Thread-1运算结束后,number = 1181608
主线程执行完毕后,number = 1181608
结果并不等于2,000,000,可以很明显地看出脏数据的情况。这是因为两个线程在运行过程中,CPU随机调度,你算一会我算一会,在没有对number进行保护的情况下,就发生了数据错误。如果想获得正确结果,可以使用join()方法,让多线程变成顺序执行,如下修改代码片段:
for i in range(2):
t = threading.Thread(target=plus)
t.start()
t.join() # 添加这一行就让两个子线程变成了顺序执行
上面为了防止脏数据而使用join()的方法,其实是让多线程变成了单线程,属于因噎废食的做法,正确的做法是使用线程锁。Python在threading模块中定义了几种线程锁类,分别是:
- Lock 互斥锁
- RLock 可重入锁
- Semaphore 信号
- Event 事件
- Condition 条件
- Barrier “阻碍”
3.1 互斥锁Lock
互斥锁是一种独占锁,同一时刻只有一个线程可以访问共享的数据。使用很简单,初始化锁对象,然后将锁当做参数传递给任务函数,在任务中加锁,使用后释放锁。
import threading
import time number = 0
lock = threading.Lock() def plus(lk):
global number # global声明此处的number是外面的全局变量number
lk.acquire() # 开始加锁
for _ in range(1000000): # 进行一个大数级别的循环加一运算
number += 1
print("子线程%s运算结束后,number = %s" % (threading.current_thread().getName(), number))
lk.release() # 释放锁,让别的线程也可以访问number if __name__ == '__main__':
for i in range(2): # 用2个子线程,就可以观察到脏数据
t = threading.Thread(target=plus, args=(lock,)) # 需要把锁当做参数传递给plus函数
t.start()
time.sleep(2) # 等待2秒,确保2个子线程都已经结束运算。
print("主线程执行完毕后,number = ", number)
RLock的使用方法和Lock一模一样,只不过它支持重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire()
可以被多次调用,利用该特性,可以解决部分死锁问题。
3.2 信号Semaphore
类名:BoundedSemaphore。这种锁允许一定数量的线程同时更改数据,它不是互斥锁。比如地铁安检,排队人很多,工作人员只允许一定数量的人进入安检区,其它的人继续排队。
import time
import threading def run(n, se):
se.acquire()
print("run the thread: %s" % n)
time.sleep(1)
se.release() # 设置允许5个线程同时运行
semaphore = threading.BoundedSemaphore(5)
for i in range(20):
t = threading.Thread(target=run, args=(i,semaphore))
t.start()
运行后,可以看到5个一批的线程被放行。
3.3 事件Event
类名:Event
事件线程锁的运行机制:全局定义了一个Flag,如果Flag的值为False,那么当程序执行wait()方法时就会阻塞,如果Flag值为True,线程不再阻塞。这种锁,类似交通红绿灯(默认是红灯),它属于在红灯的时候一次性阻挡所有线程,在绿灯的时候,一次性放行所有排队中的线程。
事件主要提供了四个方法set()、wait()、clear()和is_set()。
调用clear()方法会将事件的Flag设置为False。
调用set()方法会将Flag设置为True。
调用wait()方法将等待“红绿灯”信号。
is_set():判断当前是否"绿灯放行"状态
下面是一个模拟红绿灯,然后汽车通行的例子:
#利用Event类模拟红绿灯
import threading
import time event = threading.Event() def lighter():
green_time = 5 # 绿灯时间
red_time = 5 # 红灯时间
event.set() # 初始设为绿灯
while True:
print("\33[32;0m 绿灯亮...\033[0m")
time.sleep(green_time)
event.clear()
print("\33[31;0m 红灯亮...\033[0m")
time.sleep(red_time)
event.set() def run(name):
while True:
if event.is_set(): # 判断当前是否"放行"状态
print("一辆[%s] 呼啸开过..." % name)
time.sleep(1)
else:
print("一辆[%s]开来,看到红灯,无奈的停下了..." % name)
event.wait()
print("[%s] 看到绿灯亮了,瞬间飞起....." % name) if __name__ == '__main__': light = threading.Thread(target=lighter,)
light.start() for name in ['奔驰', '宝马', '奥迪']:
car = threading.Thread(target=run, args=(name,))
car.start()
运行结果:
绿灯亮...
一辆[奔驰] 呼啸开过...
一辆[宝马] 呼啸开过...
一辆[奥迪] 呼啸开过...
一辆[奥迪] 呼啸开过...
......
红灯亮...
一辆[宝马]开来,看到红灯,无奈的停下了...
一辆[奥迪]开来,看到红灯,无奈的停下了...
一辆[奔驰]开来,看到红灯,无奈的停下了...
绿灯亮...
[奥迪] 看到绿灯亮了,瞬间飞起.....
一辆[奥迪] 呼啸开过...
[奔驰] 看到绿灯亮了,瞬间飞起.....
一辆[奔驰] 呼啸开过...
[宝马] 看到绿灯亮了,瞬间飞起.....
一辆[宝马] 呼啸开过...
一辆[奥迪] 呼啸开过...
......
3.3 条件Condition
类名:Condition
Condition称作条件锁,依然是通过acquire()/release()加锁解锁。
wait([timeout])方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify()方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池),其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll()方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
下面的例子,有助于你理解Condition的使用方法:
import threading
import time num = 0
con = threading.Condition() class Foo(threading.Thread): def __init__(self, name, action):
super(Foo, self).__init__()
self.name = name
self.action = action def run(self):
global num
con.acquire()
print("%s开始执行..." % self.name)
while True:
if self.action == "add":
num += 1
elif self.action == 'reduce':
num -= 1
else:
exit(1)
print("num当前为:", num)
time.sleep(1)
if num == 5 or num == 0:
print("暂停执行%s!" % self.name)
con.notify()
con.wait()
print("%s开始执行..." % self.name)
con.release() if __name__ == '__main__':
a = Foo("线程A", 'add')
b = Foo("线程B", 'reduce')
a.start()
b.start()
如果不强制停止,程序会一直执行下去,并循环下面的结果:
线程A开始执行...
num当前为: 1
num当前为: 2
num当前为: 3
num当前为: 4
num当前为: 5
暂停执行线程A!
线程B开始执行...
num当前为: 4
num当前为: 3
num当前为: 2
num当前为: 1
num当前为: 0
暂停执行线程B!
线程A开始执行...
num当前为: 1
num当前为: 2
num当前为: 3
num当前为: 4
num当前为: 5
暂停执行线程A!
线程B开始执行...
4. 定时器Timer
定时器Timer类是threading模块中的一个小工具,用于指定n秒后执行某操作。一个简单但很实用的东西。
from threading import Timer def hello():
print("hello, world") # 表示1秒后执行hello函数
t = Timer(1, hello)
t.start()
5. 通过with语句使用线程锁
所有的线程锁都有一个加锁和释放锁的动作,非常类似文件的打开和关闭。在加锁后,如果线程执行过程中出现异常或者错误,没有正常的释放锁,那么其他的线程会造到致命性的影响。通过with上下文管理器,可以确保锁被正常释放。其格式如下:
with some_lock:
# 执行任务...
这相当于:
some_lock.acquire()
try:
# 执行任务..
finally:
some_lock.release()
6. 全局解释器锁(GIL)
既然介绍了多线程和线程锁,那就不得不提及Python的GIL问题。
在大多数环境中,单核CPU情况下,本质上某一时刻只能有一个线程被执行,多核CPU时则 可以支持多个线程同时执行。但是在Python中,无论CPU有多少核,同时只能执行一个线程。这是由于GIL的存在导致的。
GIL的全称是Global Interpreter Lock
(全局解释器锁),是Python设计之初为了数据安全所做的决定。Python中的某个线程想要执行,必须先拿到GIL。可以把GIL看作是执行任务的“通行证”,并且在一个Python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。GIL只在CPython解释器中才有,因为CPython调用的是c语言的原生线程,不能直接操作cpu,只能利用GIL保证同一时间只能有一个线程拿到数据。在PyPy和JPython中没有GIL。
Python多线程的工作流程:
- 拿到公共数据
- 申请GIL
- Python解释器调用操作系统原生线程
- cpu执行运算
- 当该线程执行一段时间消耗完,无论任务是否已经执行完毕,都会释放GIL
- 下一个被CPU调度的线程重复上面的过程
Python针对不同类型的任务,多线程执行效率是不同的:
对于CPU密集型任务(各种循环处理、计算等等),由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换是需要消耗资源的),所以Python下的多线程对CPU密集型任务并不友好。
IO密集型任务(文件处理、网络通信等涉及数据读写的操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以Python的多线程对IO密集型任务比较友好。
为什么不能去掉GIL?
首先,在早期的Python解释器依赖较多的全局状态,传承下来,使得想要移除当今的GIL变得更加困难。其次,对于程序员而言,仅仅是理解GIL的实现就需要对操作系统设计、多线程编程、C语言、解释器设计和CPython解释器的实现有着非常彻底的理解,更不用说对它进行修改删除了。总之,整体技术难度大,会对当前内部框架产生根本性的影响,牵一发而动全身。
在1999年,针对Python1.5,一个叫做“freethreading”的补丁已经尝试移除GIL,用细粒度的锁来代替。然而,GIL的移除给单线程程序的执行速度带来了一定的负面影响。当用单线程执行时,速度大约降低了40%。虽然使用两个线程时在速度上得到了提高,但这个提高并没有随着核数的增加而线性增长。因此这个补丁没有被采纳。
虽然,在Python的不同解释器实现中,如PyPy就移除了GIL,其执行速度更快(不单单是去除GIL的原因)。但是,我们通常使用的CPython解释器版本占有着统治地位的使用量,所以,你懂的。
在实际使用中的建议:
Python中想要充分利用多核CPU,就用多进程。因为每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行。在Python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。同时建议在IO密集型任务中使用多线程,在计算密集型任务中使用多进程。