题意: 有点迷。有一些点,Stan先选择某个点,经过这个点画一条竖线,Ollie选择一个经过这条直接的点画一条横线。Stan选这两条直线分成的左下和右上部分的点,Ollie选左上和右下部分的点。Stan画一条竖线之后,Ollie有很多种选择,在所有选择中,Stan能获得 “分数最小值的最大值” ,而Ollie的选择便是让自己越多越好。问最后Stan最多能得到的分数是多少,以及在这种情况下Ollie能得到的分数有多少种可能。
解法: 因为Stan先选,然后主动权在Ollie手中,Ollie会优先让自己得到更多的分数,然后再考虑让Stan得到的分数最小。然后才能求得Stan得到的“分数最小值的最大值”。
既然是Stan先选,那么我们最好按x从小到大排序,y坐标离散,依次处理,又因为在同一条竖线可能有很多店,所以直到坐标变化时才来同一处理那些横坐标相同的点,Ollie在这些点对应的纵坐标中做选择,使达到上述说的效果。
由于竖线往右移,那么维护两个树状数组,一个是当前竖线右边的点的情况,一个是左边的。然后扫过去,遇到p[i].x!=p[i-1].x时,就可以处理前面的一个或多个横坐标相同的点了,然后按上述说的做就行了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <set>
using namespace std;
#define N 200007 struct node{
int x,y;
}p[N];
int n,maxi;
int L[N],R[N],a[N],b[N];
int lowbit(int x) { return x&-x; }
int cmp1(node ka,node kb) { return ka.x < kb.x; }
int cmp2(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j;
while(scanf("%d",&n)!=EOF && n)
{
maxi = ;
for(i=;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p+,p+n+,cmp1); //....离散
for(i=;i<=n;i++)
{
if(p[i].x == p[i-].x) a[i] = a[i-];
else a[i] = a[i-]+;
}
for(i=;i<=n;i++) p[i].x = a[i];
sort(p+,p+n+,cmp2);
for(i=;i<=n;i++)
{
if(p[i].y == p[i-].y) b[i] = b[i-];
else b[i] = b[i-]+;
maxi = max(maxi,b[i]);
}
for(i=;i<=n;i++) p[i].y = b[i]; //离散....
memset(L,,sizeof(L));
memset(R,,sizeof(R));
for(i=;i<=n;i++)
modify(R,p[i].y,);
int Stan = -,ollie,stan,start = ;
sort(p+,p+n+,cmp1);
p[n+].x = -,p[n+].y = -;
set<int> Ollie;
for(i=;i<=n+;i++)
{
if(p[i].x == p[i-].x) continue;
stan = ollie = -;
for(j=start;j<i;j++)
modify(R,p[j].y,-);
for(j=start;j<i;j++)
{
int pos = p[j].y;
int STAN = getsum(R,maxi)-getsum(R,pos)+getsum(L,pos-); //右上+左下
int OLLIE = getsum(L,maxi)-getsum(L,pos)+getsum(R,pos-); //左上+右下
if(OLLIE == ollie) stan = min(stan,STAN); //在保证Ollie取最多的情况下让Stan得分最少
else if(OLLIE > ollie) stan = STAN, ollie = OLLIE;
}
if(stan > Stan) Stan = stan, Ollie.clear(), Ollie.insert(ollie);
else if(stan == Stan) Ollie.insert(ollie);
for(j=start;j<i;j++)
modify(L,p[j].y,);
start = i;
}
printf("Stan: %d; Ollie:",Stan);
for(set<int>::iterator it=Ollie.begin();it!=Ollie.end();it++)
printf(" %d",*it);
printf(";\n");
}
return ;
}