Weka开发[4]-特征选择

时间:2023-03-09 21:48:19
Weka开发[4]-特征选择

特征选择,我对这一部分也不熟,大概讲一下,用AttributeSelection进行特征选择,它需要设置3个方面,第一:对属性评价的类(自己到Weka软件里看一下,英文Attribute Evaluator),第二:搜索的方式(自己到Weka软件里看一下,英文Search Method),第三:就是你要进行特征选择的数据集了。最后调用Filter的静态方法userFilter,感觉写的都是废话,一看代码就明白了。唯一值得一说的也就是别把AttributeSelection的包加错了,代码旁边有注释。

另一个函数懒的解释了(它也不是我写的),基本上是自解释的,不太可能看不懂。

package instanceTest;

import java.io.FileReader;

import java.util.Random;

import weka.attributeSelection.CfsSubsetEval;

import weka.attributeSelection.GreedyStepwise;

import weka.classifiers.Evaluation;

import weka.classifiers.meta.AttributeSelectedClassifier;

import weka.classifiers.trees.J48;

import weka.core.Instances;

import weka.filters.Filter;

import weka.filters.supervised.attribute.AttributeSelection;

public class FilterTest

{

private Instances m_instances = null;

public void getFileInstances( String fileName ) throws Exception

{

FileReader frData = new FileReader( fileName );

m_instances = new Instances( frData );

m_instances.setClassIndex( m_instances.numAttributes() - 1 );

}

public void selectAttUseFilter() throws Exception

{

AttributeSelection filter = new AttributeSelection();  // package weka.filters.supervised.attribute!

CfsSubsetEval eval = new CfsSubsetEval();

GreedyStepwise search = new GreedyStepwise();

filter.setEvaluator(eval);

filter.setSearch(search);

filter.setInputFormat( m_instances );

System.out.println( "number of instance attribute = " +m_instances.numAttributes() );

Instances selectedIns = Filter.useFilter( m_instances, filter);

System.out.println( "number of selected instance attribute = " + selectedIns.numAttributes() );

}

public void selectAttUseMC() throws Exception

{

AttributeSelectedClassifier classifier = newAttributeSelectedClassifier();

CfsSubsetEval eval = new CfsSubsetEval();

GreedyStepwise search = new GreedyStepwise();

J48 base = new J48();

classifier.setClassifier( base );

classifier.setEvaluator( eval );

classifier.setSearch( search );

// 10-fold cross-validation

Evaluation evaluation = new Evaluation( m_instances );

evaluation.crossValidateModel(classifier, m_instances, 10, newRandom(1));

System.out.println( evaluation.toSummaryString() );

}

public static void main( String[] args ) throws Exception

{

FilterTest filter = new FilterTest();

filter.getFileInstances( "F://Program Files//Weka-3-4//data//soybean.arff");

filter.selectAttUseFilter();

filter.selectAttUseMC();

}

}