MAX Average Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7639 Accepted Submission(s): 1667
a simple sequence which only contains positive integers as a1, a2 ...
an, and a number k. Define ave(i,j) as the average value of the sub
sequence ai ... aj, i<=j. Let’s calculate max(ave(i,j)),
1<=i<=j-k+1<=n.
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
6 4 2 10 3 8 5 9 4 1
这题有个模型,挺经典的。
然而,不知为何,HDU上这道题已经不能AC了,原来的标程都会TLE!!!
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA+4AAAJYCAIAAABzYis1AAAgAElEQVR4nOy933cb13n3i/4JuNANr7SarKZL1Wt79XipLFO6TnqSNHl7kZg5K6rJBC5sOXYd16zbWAnjkJYDJEJiNa+bU/sVW6h6lQSujZZKXdsraVDaOUlISAIoUCbDWLBiuYZ+WJYsSBSJwe9zsffs2T9nBiBIAtT3Wd9lQ8P5sWfPA/Kzn3n2swPNm94ajUaz2azX66VSqVQqra6ulstlshF2kxt8A2Yy+AbMZPANmMngGzCTrcU3Auvctt6wer1eqVQsyyqXy9VqFd8rGDP4Bsxk8A2YyeAbMJPBN2Ama9s3gPLUGo1GvV5vNBr4XsEkg2/ATAbfgJkMvgEzGXwDZrL2fAMoD4PBYDAYDAaD9aTdpCivDncwPoYRg2/ATAbfgJkMvgEzGXwDZrJO+QZQ3tmCrxasCd+AmQ2+ATMZfANmMvgGzGRAeRgMBoPBYDAY7Ka2HkN5jGVhJoNvwEwG34CZDL4BMxl8A2aybvONrkb5hm1122q1WrVardfrm9002CYbfANmMvgGzGTwDZjJ4Bswk3W/b3QpypMuq1arpMQmKZhPPqysrFiW1T09CNtgg2849sp830jaTfccv+2hE3c8furAjy9eKW18+848wDXmgVdaOVS4teyBU74O6j7fqF7J/ebAgbk7Hjy+nT2R0blHDv9mcdl80PKlFw+fumv0xIfusQ/Zm4skz73t+gSts+cOH8x98qHjHyQXCh+/4/FTB358yeU6zWazuXzlp4lTd406R92+d977KMWOxjTu99HDF/V7l848cI+6v9+n3J51n2/AusXgGzCT9YpvdCPKNxqNarVaLpfJelfsv6z7yuXyZrcRtjkG3xDME+U5bX/k9ZfPVje2fRuK8l3nG8vnn33ixHbTEwlnxv7zqqUcdOEXi58KG57gg/M/WNI+werS1PxtGjhO942kP/iVxZ+d1zfQOvnGZ+9v+SitaVG+72tvnNXu/errv6u56DqifNf5BqxrDL4BM1kP+UbXoXytVuM7jjfSfVjo+KY1+IZsraB830i67/75o63w2Zpt41C+63yjdOHAl495PZHjD7xynT/owiunTERuDwDmnj4p0Xz15JG5D7qP4h48pXnu5/Mjrtfa/uWlk77f5OhRfiT3g8uanX/57AndzuuF8l3nG7CuMfgGzGS95RvdhfK1Ws2yrJWVFfLmolKp1Go1Nr2g0WjUajWyZbNbCttog29orFWUH0nvfPptNRK8brZBKN+FvjF/OOtvcPV6iuFy6e3HDDFyQY8uzfNXOv3GZ9zpfyTdN5L+3diZK0IDV47Gjnsddewzz+lIXGcGlD/2wCvqa4SLBx7V7rwuKN+FvgHrEoNvwEzWc77RRSjPXmSUSqVyucy6ie+sbps1DNsYg2/ozZV3rcvFxV+e/utHxdjwPfNHNy5pfiNQvit9o/DEX/J9nnn4xfPvLjebzeqV3JsPP8I/kWNf+NEKOebsc3P89g8/9WbucrXZrF554+yB8ePaQ5rNZupp/kfHP3v47JnlZrNZfjcrXehE9ATXwMv5EX6A943TucvVZrN8Znrx4/zA4MtLv/J3wwaUT//u02/Lu771xmf0I4fOo3xX+gasKwy+ATNZL/pGF6E8e3NRqVRYH3Vbf8E2xeAbevPDu6UL3xaCoCeemN2w9m0Eynejb5xa+ih34/8zIca2z5/+fzSwW01+k3tMDy8e5w8pFZ54mPvpk3k7xH7h26PO9u3feFMIvYspNL//bIH9xHpl3kniv+/1n3CjOzH7Zf6ovzsWUf54/8P2AOMvF38p7nllKsdc8ff5Ac86oHw3+gasOwy+ATNZL/pGV6B8vV4vl8skIUnqO9P+/FTiWq22gY2FbajBN9zMH+9KyR4cUvOoPX+0WV166fVP3k9Cucd2js6N/+SqeKby4qu/jjyZvZ3uk95+34nb3YqrqChfXvzx0hf30tos2+87ccfjC4ePaWZ/+ri16tn0G1/5Wua2e2mDP/Rg5q4DSy8u6JIXebb+68UTpZJ1+dxz//vkJ+3CMh+8P/tFrqqMdfbtZw/M/eF9TleMvdhKUZfjb4zsPXH7Qyduf/D4dk3jxQyT2BnzRsdOxjO6VytCDysVY8ThAZeZc+XkW//n8Ot/9WT29oeO3yYGzgVvue/1lL87FlE+++3DbKgg3X71aMx+V/DlxeiTnihPHWYnnQp8bOdD2ZGDp2ddJnAvX3rx8OvDe0/8njN7+NiHHjzxySdfP/DjS9cNvzdW3yr807O5Tz9y/Hecwc+xnQ9l7vrWot4/m81ms2mdPffC4VN3jbLmEV864VU7qHol9+bY4xl61D3Hb2NVg3i3lzKpiJWuziYXhOpGngWRYKLhbwrMZL3rG+uO8g3OTPtUq1Uyh8CyrGrVu8hGo9Fgrz98HgLrQoNvrNU6ivKHX5nfKSQ8HH/sVaf3lk/8+s8fNM/jDM9Ff6YSj4jyL12YHNfmZx+77Zv5JXEw0HC/NbfiMMfu/N7ZC1JDBJRf+MnLp/5YVyVm+4Onjp6vnnzupHbu6c5vyI1s1wRqt4PlHigvPsTMt09qelgt/igS9nzSu/3Xf/Ck85R/97tnfc6skFD+wKtOFs1nnuMHhG8/dp9z4/JRUobY2bfGHjW43D0n/vy5CyXl94ZL/R/K2ZrKPG71f0z+2WxW337JY46yoQrQ9Z88ndG67s7xN06+5Ibybt/BcGbsv66rF7vZDH9TYCbb2r6xaVF5vkMrlcrq6iqZDuxepJMdUqvV2MxifLW2mME3/Fo7CTaMApsiCB7bLnLJ9q+9kbf3u/Bfr3/Ye27l8S9MvSeSnwCaHwy7VXTZGTsj8Lfh1hqNRmPVuziMdLbG/K8clL/nmLFA5Eh6+33HzdVgWpgG6manf/0/udOOTJHE95Uf8CHqv1z4mcCOAmH3OeMxMSl//LTQh1JajlcGi3X54vNPcZR5z9zkab/3pEA5l/njpAM1m7OLv2935gOvVN1Q/vyZBzwmAR/7+OELvL813vA1A3j7lwVELk2/vtPrkL6R9M6n3uKTl6zZxX4fR6mzjV96ym228fZ7uKcsorx1cunjHncnF0SCMcPfFJjJtoZvrCPKq0MfvsvYZ/JGg/RFtVrVDpjU1xzkvcamdx+sPYNvdMZcUX75wtXFX54W5z5KKRMCaveNpLd/efGnbyqFcqWqhfefjNIFpzRzK5+Y5TtcPj83AVQ99vgDr6w02XMUbi3z1Dx7ypWf8hM97znx4L+98+6NamP1Ri7Jx1aPP/DKiuMbPMqPpPtG0r/3+OKP31hpNpvLC6e/oCDjzvGln75Zbjarb/9MnAaqzXlozUSYuyf3L/boIJ+Y07VBIeyRdJ8T6q7+5LvCjFh7smxz+U1psmy6b+T4Y6+aWiXk3JOnPClXvXQzFcqd+bjcTGsuEX9u8i3NUbZdnvzaMb4xB6avLDebjetXfjrJV97MPjXv/N746dPOIb/39cWX5668t7parVavnz8nduCxL/yI+cbVya852we+/cYvT79fLJWqVUuZbczPG776z+N883KHcytWs0m8+gFh+CS8CbFeFYYN2x859XxuxWo2rcuXxftSnE2sbsQdePHwN7nXU/fNH+3EYLMXDX9TYCa7GXxjI6LyjUaDrXNbrValCj6k6A/rPtMZpA/sKLzw6mmDb6zJWi5GeezjR/gcDAm1557VRGFFWLxv/nkpTVkqoC7ArnR+IWOn2VQir1/5NXsPIKH8d07aviGEtI/vefEy7xsXpnLbuZbkTCj/pddfveb4hsTQfQ8v/nLN00ANJteAF1JivAq99+kO9BkeJjLPPBafVHgu9uqVlrKvVSjnpreyIQSXRPTo0rzuKHpT/8WtIXVP9oAwqKjyT2T7/jdv0N8bfIZS5lvHpd8bl5/92vHb9ua+evh0Klu8UmK/Lvgbzz13Tfy9UTr76IPH73h8PpL4zS8WlvkOsS4XM6/+OvKtuTvuP/Hofwlezd14WhyfrPzLN7hvyn3zSSH9pnoyLhYw5b5KgovKq0MIb2yMK+zeNIa/KTCTbWHfWF+UbzQapMy+tOAt34O1Wm3VNn6egXQe/nO9Xq9UKqxUUJcsnAtryeAbHbAWUV5Z9EcEOO3anJff/ALHl3Ixlmaz2Wxav1j4fec8fOhXPD+faGGbiNFzk281m8Q3XhJQPpalvvEWX7HxwVPTkm+UzjzgtDbLYvnNU0sf4VoyOPmO4BtiN0owZL3U8rqzBquefO6kkMshjhmazeYFebqCN8o3m9WTh7MuKUO+UF4suUP0wUcXfuJ7QTERyucm32o2F5c+bm+h8wG4MpSkbo8J5YUKm6LbNBqN2slf3emAfi55jfjGhae4RLI7//7M6at+fm8IOWZ//sNzl9f+e8P0rkxwTh1ziztwKM+/OhAqERET6hF14MVRrxr+psBMtuV9Yx1RvlarVSoV8uqBWcle7Za9v6jX6+xHfF9Ib0DYaev1OpmawIZBLpMYYN1p8I3OWAsor526J6C2pgR4s9n8ySkOEylqKyZkbN8RZwnbwvk/fuSS5lAneTrdN3Ls4Z/YvvEiH9rMxDLUN/51P3dT3zyt+MZFnueG/+0GvYqI8ve/KPqG2I0y77a47qzByicOixkUcrCZmGkK5rFPfe91PsNeBMHrP1PTM0bSffecePjp+d91uTVml6++caHcVNNy+BWsXE2aX3u02RS84tGleTFcfe9L1ab8xoP1rTADmL9T+/dGfo9z1PGv/3/UN37yv8Rcsr84/oknTn376NnXz9N70P3eECi5byS9/d4Tn/nmwrPT5/77cmsBtuULVzOvnj7gFD5SHObkr+5wtmtrworzJRwo9yrqKozE9CvsbnnD3xSYyW4G31hHlOe7jBnpTTIeqlQqzWazXq+zn5Jq/ORwl+4rl8s3btxQu3v97gXWWYNvdMa8UP6D95+4/aHsyPeWXlxQMuCbTc/6J025cIopvUTkIaf6io+68uKCQQ+8YvvGv4sonyW+cf7A37rdryRnUCGh/H+IvuEO6x1A+es/e1YMnIfnnjZnopNSmHeQip/3HL9t7/yzP7tqiYFzgsK8LS+8GXkyexvhyPDxOx5feH6hLOUpcTOezSZOlu2fPOfnDnUoz9WdHJmbfEv6Z7Mpexfr27ce9p1o1DeS/osfrdDfGwu/+rThwO33nfjkk4v//Msr15XfG1L+uvj1ydx1YOlFmgevseUL51OJxZG9QjFKUZzD+HAkYWzDUJ57v+FD/p7yljP8TYGZ7GbwjZZR3n0CQVMszFmyy+zX63XygoMlFa2urpbLFC/IWw/tYIgcyE5erVbZ0IospevSMNgGG3xjo22tlNkplBdJzh/K274h7LPn323feFFG+VKpZFmF/X/dAuSxllT5lIyR9BdfEn1jfVH++tGnhLqZ2x+c/8FS6ymVwusRv+tt/eqIlpU9TKhh72/BVx3KC+vXjkydYWUo2bpRBpRXZku76s54gf3eeH/2V24lU0fS2+/Ljr54qST83rDyr5y64y/cLvHBL+UO/EIsDlN6L/l3GXOxozZRXugQhvK69CcXtbYWW3cb/qbATAbf4K3NqLy2E8lbDH7B22q1Su6fGJlwQEZCpLPIeci7D5bDxI+HmvbjIXlOJbvkJ7+aLqyrDL6xcdZRlBfrf1PrYFT+3pc07x8b750e5lH+Rds3XpamvRLfaBHl95+hvpFZ5FH+gVfEZqwjyl8/GhPKyOwc//WJtlbzkaD86UVfR730FMe195x6yd+1fI7feNOiPJ9Ssv3hEyyTiqVyScXy20P5j/zzBfH3hrX46q+/8rUTv2MM7R9/4JXr8u+Na5d+fnTx/sfMpUiFhCj5sZJ1xPZ8b+n/vHr+v6cMDtN2VP4mRnli+JsCMxl8g1gLKM+3VRr9sNsjYxQ2+tGeh4yBSEeQbmJTB/j3IKSPyDMgP11ZWVlZWSmVSuSptHvLsM4bfGNzrKMorycAX7nyzro/feZc+TviFzS+kV0c5Bhr/Oe2byi3RnzjhW8JpO7XN44v3Olyp+uF8lI8/tiHn37LsCxus9lsNvNnIgdO/dWT2dsfOrEzLKVJiFnUXEXRK7NvfPXAqT2PZ25/6MSH7pEWgRKrzjvTms/F7UNuu+8Y97yoCUDpbwCgR3nRMZjsUvrN3D9z4X+n5KiQK3/nP73T7u+NG2/PnvnHfzr1518+8XtS0P1LCzOm3xullTd++Zv/fXDeWVGVjUa+8SadgHuCrxp07MNP/+YMPzwzOcz65cpvRcPfFJjJ4BuqrTVXvtFokNtjRXxI+j9/e9Irj5I9d9iyLPYjNuGA9R07IZ/k1CUDIJgfg2+su20Ayl/Oj3D7+KhgwzOKGF59ePG4/QPmG4tCsDn3woq2qkz2qRz1jZM8/D26lPPpG9nFj7jc6bqgvFRY5tjH4+c9wvFiSjTf1dZJoZjm9tgZJ3tbGGsd5wsjXnhJmPPKJVCJK8tKhXQun3mA529tXSPFBJR36F9kU7sP2SsFbYJNo9F48TvOy4Tt3zx9zdfvjeW3596a+pfFr+7L3nZf9sAp8fdG8dK/H+Cn2OaeJ75RvHom/Zvnf7hw3+OZnfc59e+pLV/6f7+mKbQqviGR19A1ljzyrGAjVoviUP7S0192PfCmMfxNgZnsJveN1lBeTUUiCUMle7ErdQDEH8JX4C8p5fTZLGO2A8tk6sKOg0kG39gE2wCUV4phe9SV52vDy5kSx0aSVy3eN946vYdf+IZFPZvNhjRfM2v7xsKv+LryD7xy3ZdviHXlNwDlJfiW17LVmxhEv2/u72dXrGb1Sk5axEoszy+Otfoefv3f3yw3m+Uz0+LiVuLSrccnea51lqNafvNs9CtCrrl28KaagPJcPUSRetN9I06ifFNXgp34xrWfzPN15Z+aEyZt639v/Kcwbul/tmCJvzfOPc+XPc29UCqVy+UzQi3UYyNT8mqp2owXcQQiVYyR1uXdgLryW9bwNwVmMviGZGtCeVaIh73LMA2AmvabC9IX/M78ORtc7U9mpJK/+haj27ryJjf4xibYRqB8s3lKXDHeZbVXucCimvR8/LOHz/7qXatUunH+xBsP/pVmpVj67ESU33+C+UZxaj9/xczDL56/eL1Rq9Xe/+93fvDtE79zf+bT0VOxfzlz7DfXV5hviNnG64/y4mKl7nKmFkiMqNf2J/PiqGBFydvWiKCtYz6Xo2qvGCVf2lwoNpruk14pKH1r/94QJ0Xcf/LA9OUrpWajUbnyxtkD4yc+9GB25MDisz/+7/l3bti/N975u78VFg/+7OGzb1yuNhqN2o3lhZ8uDvGDxidPXyK+cfmth/lhkrMacbO5vJx58dSHuV5ixXyEOu4j6Z3jv565XG02q8oCsWlphV1pPS9+0VZ1QV+hG8VXJdsfOfV8lixZRb6Dx51M/RZraHaz4W8KzGTwDcnan/bKEpIsexqvOuFX2tmyq/9Y3LJY0iOB9brBNzbONgbl/S5ddPyBV6SgJn/+4zvvdzn22McPX7B431BQ3vENaY1YI4ZywcsNRvkTLazAyqN8s/T2Y663tv3BU5qI7Ok3PuPK5R/8irQ0mL9nqq98rzcjykvLHnGJ8krfZr5z0vm9cfXYwv/tY7Cx/W8XZ69S37iR+dXH/YxPxPvyuywX705ej4mXWDa0Kqx+5S5xsSef7fT3/qfHDH9TYCaDbxBrc9orPznAMsz2lfZkpt0N1tMG39gc2yiUbzabF36x5FLmb/uDJ+VqffL555Mn3/isHoCOferg2xJ/SBVsYhnBN6yzb4096hb2/uCjryf5go8bi/Liykde4lG+2bSMvZTeOb70M0NmxYX/ev3Deoo99uGn3lSWBiNWffs/F+40FETf/uDJZ09o1yLQmxHl5TWYhA6U06jmhN8bl2d+9bkHXJ7ysdvGF3/6lvB7w1oSXxP5u68Lv1gy9bntTgsvi3ll1smlT+m77tidf/fmC//gOMDvfvesWJZeLk7qPKmn3/qnb5q60eN5sUsbnnXvGf6mwEwG31Ct/QSbSqVC6urXarVSqbSysmIpk4XJWw82V2ArdRxMMvjGJtgGonyz2Ww2y2d+eTryZPb2+yktbb/vxB2PnzpA823czz9/tNlsLl+aOjT/6VFa8m/7vcc/EV34t5PLGt8Q68p/56TqG+XFHy898niGNaZv5NjOhzJ3fWvx8C+vyBNMNxTlhUmKraJ8s9lsLl968fD8Jx88vt3p5AXNTYlmnT13+Hv2wlIj6Q/ef+KT+92WNxKu9ZBdhPGe47ftzUWS59wq7ejMjPJilXqu9k6zKfftt+eU3xvXLv3i+YXhvSduY0uo3nPstr/M/vn/WvjX4+8X9b83youv/jryZPZ2uwNJb7g6arNZujr7ouxOH3rwxCef1LmT3XXPf2/uDvsqtMPJWmyvvs7l+ud+IA/Aqm//7NePPG5XyAkfv+PxhcPHrlpSN2or+i9fevHwqbtGuUWpwsdvH53bc/D0L95sYejVE4a/KTCTwTcka7+CDSnM2Ww2G42GWr+TzSoo2ZX5WV3PzjUe1qUG34CZDL4BMxl8w7DUGgy+ATMafKPpifINu5Y+STBixTWl3VjNfNKDpDg/m39QrWqWhoH1usE3YCaDb8BMdhP7xsUDXzl++97cXx38dfLV829dUIPol5/9ioPyHz9yaRPauKl2E/sGzMPgG+5mRHlS3IdV5Clx9TWl2cFNu6InK9bDphSQ9Wy3at/dtAbfgJkMvgEz2U3vG9WjMT6P/9jH4+/QajnN6pX/Pi8WsZl79rT72baU3fS+ATMafMOPyShPZvhWq1VWdJMZ6UTygZ8RTD7w9X1I9229Vxg3ucE3YCaDb8BMBt9gJhWjdNHOp9664n2+njf4Bsxk8I2WTEB58v6CdRPrCzKroGSbdiTUbDZrtRobKvFd3OzxKj+wJnwDZjb4Bsxk8A3Rqm//p6nWkBOtv+2b+S1TiMbF4Bswk8E3WjUH5clbjHK5vLKywr+SIAMadvPSZ/4DP+egVCrxpT1hPW3wDZjJ4Bswk8E39LZ8KZVY3PN4hq+x03fP8dseyo58z0fRoS1h8A2YyeAbbRhF+QZXZr9kWJmW9ZG0hf9A3mus2stoVSqVLTkAuqkMvgEzGXwDZjL4Bsxk8A2YyeAb7RlFefY+olQq+ZkcwKYSS0lIjUaD9SBbSUvtZViXG/+k4Bsw3uAbMJPBN2Amg2/ATAbfWLsFmvY9k7yicrnMv7bQWoNb/FaqtN9oNPhS/Fu7+s/NYPANmMngGzCTwTdgJoNvwEwG32jbAg27dg/pPvcVsFjP1uxVtUqlkvTmghXkZ9237jfRbH7rH6mwpdUt7Nm5bGG+4X4eciB/FPENtoX5xube+6Zblzz6tWzhHyv7veHpZrwLsd8bbAv7vdFVd7rpWyTb4MZoTf0Ty2/ZGn9TYO0ZfANmMvjG+lmg0WiwEvrlsrxohdT1fKezyp1k8MQfxcZJ0tq562ddBWq9bvxT3gK+IVk3uEo3tKE929q+0YWmuspGOk9L14JvwEwG34CZDL7REQs0m02+nD7/M+0Qin0mwx32HoTfjc9eMp2qs9a7bNTltgV8Q7JucJVuaMPabev5RhdaD6E8b/ANmMngGzCTwTfatkCz2WQvINTuMx1Wr9ctexkt9tqCHyep/Q6U705rNBrE17UPaAv4hmTd4Crd0AY/drP5Rhda16I8fANmMvgGzGTwjXUyAeVfuDsQuDW2IO2yELs1EPj8j5wN/GJafgp2uvXdjz7PnftHnw8oxl8Y1mlr2Nlp5XJZOymE+Uap5GvNkk76xgaZzuuo3RpbkByUfT2E7VvS4Bswk8E3YCaDb8BMBt9YPws0m02WnOSG8kedUQ6pFuQ5KdhlYOSYgvLi9Rdit+qaBOuQkUwyshCDtvAq8w2Xrxb/oDvpGxtvyqhVMME9tz7KwzdgJoNvwEwG34CZDL6xfkanvZJMo38dDgRuiUrc3Hh9P+Mbvu9KpVIHivt4oLxpI6wztrKyQkbA5AMZ1PJ+z2ehSe+8+D2b6+EbG29Aec7gGzCTwTdgJoNvwEwG31g/CzSbTVLIs1QqJe8OBG6JzlerQrF9m2/IarrJu7n8g/2nuFNxiQo8ev/o84FbY7HPK9udg9xRXuQrA0H1SvJxtxm/uDH5PpDt7Okz3yDpa1XJN2wjvsG+V908W9zNVTQoTx1uIXar6N2iI/I/5o/vZXe9CX2jC63NXPnTB27nM8VuP3C6Q1cnBt+AmQy+ATMZfGP9LNC0l9daXV194e5A4JZorlIRhjgLsVsDgZGjdZqB8z8iWdJ3p/ZLiO3yD2MA0wfK+4nL9wQbdaHV63X2zSH/lQbKzDfYd0Ya/jYaDb56a/d/r9pDefujLiovZIH5SgnrCXe9CX2jC60NlCcYf+/LzpaX7xX+uZarE4NvwEwG34CZDL6xfkZXeyVDHELqmZUVkntULpfL5bI1F70lELj7hdXV1WzkfwQCdyfVdxkKAnHU4w7iflB+IXYrUH7djC3KQKxSqfA/Zb5Bvl0rkm9YVsleTc0zX61LrOMoL3ute5aOZxu6yW423+hCaxnlTx+4PeAC7i/f68TqvfHe5VrwDZjJ4Bswk8E31skC5H+kB0mCTbYkWpagfKlUKp385i26sjKuBOSeVNwhlIetxcgccDZQlr4bDW4NNheTlk3uSWsH5fVztbeMv8I3estcSf7le7lcGw/m92HwDZjJ4Bswk8E31sMC7FOj0ZgaCQRu+WbWHveQIVEpG70lcEt0zqJl9vnafRRY+ExhpY7k2lEeE1/Xzci3iLz2Yl8edX1jMsWE5LEJvmHntPFLMPSwtYvy2jKWG934Tht8oxdNoHXRTh+4XfyRssG3wTdgJoNvwEwG31g/C/D/WIjdGrh1/6larVarVavVarVaq9XqR0cCgVv3vy6/xWgcZUnwrikFa0b5LdTiZzAAACAASURBVBXk7FZj42D2VdHONalJvlGva6s79eo7r85E5beawTd6yNTAO0umefleOQqvbmnV4Bswk8E3YCaDb3TcnASbZtPhk4ZtTVeSfn3/rYFb9y9ocIY7aK0o7wuVeiX5uAuNjW7JCLhcLpP/8iWi+P1533AxP/tsinU6V149xrtOZa+4683mG11orebK69JmKLG3gfIu14JvwEwG34CZDL6xThYQe1CpvyEUo5GohUcb835rQnm/S0T1Cht10FTXb8+V2XegVquV7IKvq+IKDlvpS7LOFWx8DT3X213hG1vGOjHt1Sb2l+8N3H7gDefBvUESbFyeoMu14Btbz/B7A2Yy+EaXW4BU7uQ3icm/EpWIafFKMFLzgxZRXp9w73W2mxDlmXXqC8BqPBFjVV070cYusvZRnjn/53/kVldeHglvprvCN3rdOlGMkgXfheybN56izN8eyjODb2w9w+8NmMngG91pAZKotNnNgLVsjUaDn/yx9oFsg6sDxf4L3+hFg2/c7MbXnBS4Xi5GCd+AMcPvDZjJ4BtdboHV1VV0X88Z+V6Vy2V1vbQ1npYUiiJvvuAbvWjwDZjJ4Bswk8E3YCaDb3S/BdiCW7CeMJJqVqlUpPkibSeuSVuq1SqrAAXf6C2Db8BMBt+AmQy+ATMZfKNXLNDZYdZm2U2SK9+w662SQk4rKyulUmktA1k1741ksJESUVvDNyTrBldZjzbAN7aktZErr1rbvmG6Fnxjyxh+b8BMBt/oIQtsjV7rBj7bACPjYzZThLyZ4gs5deQS9XqdlHHdGr4hWTe4yjqhPHxj61mnUL493/B/LfhGjxp+b8BMBt/oIQtI/+7R3iR/cr71j1T89q20pdFolMvllZUVtoV8u+r1+sZcvat6o70t3YPyHb814huWZbEtxDfW41rYsjFbVHdlWzbANzryZenRvyk3ibG/KZZt7G9Kc/2fHXyjmw2+0UMmozwMBoPBYDAYDAbrCQPKw2AwGAwGg8FgPWlAeRgMBoPBYDAYrCetBZRvSGpAEARBEARBEGSQCM8bjfI8stcbDaIaUR2CIAiCIAiCIFfZCE3EI/46orxE8LV6o1pvVOuNSq1RqdWJyhAEQRAEQRAEGWRjMwXpar1RqwtMvy4oTzi+3mgyiCfgblXrpWp9tUJUWylDEARBEARBEKTRaoWoXqrWrWrdqlK454B+nVDe5ngShi9Tgq/dKNeWrdp1q3rdql4rVYsQBEEQBEEQBOl0rVS9Vqpet6rLVu1GuXajXFut1ErVerlK4/T1ToTllSWiKMpTjrdsiL9uVYul6vurlSsrlSsrlcs3ypeWIQiCIAiCIAjS6L0b5cs3yldWKu+vVgjcX7eqBOgtm+bXBeVJXg3j+GWrVixVr6xU3rtRvnjdunDNunDNOnet9M5VCIIgCIIgCII0KhRL566VLlyzLl633rtRfu9G+cpKpViqLlsOza8Dytsh+TLj+NXq/PulFy/e+P65ZQiCIAiCIAiC2tCLF2/Mv18qrlKaL1fr64LytXqjUquXqvUb5VqxVE1fWf3xe6sXS7VKrcGrTFUv1+rlap3NzIUgCIIgCIKgrSGfVSb96FK59pP3VtNXVoul6o1yrdRxlCfZNVU7JH/dql5ZqTx/fvl6pX7Nql5eIaoQXbpRuXSjcnG5cuF6+fy18rlr5ULROnetfP5a+cL18sXr5XeXK+8uVy7dqLx3o/LeDXJU9Yqt91dlXYUgCIIgCIKgzZY4e7V2rVS7ZtWuW7XrVm3Zqi2X6TTWFVrXsV4Sy9SUa/WyGPUmP6rUGiu1+vPnl6+sVK5b1dVKbb1Q3rJD8u/dKH//3HKl1mDwzVj88krlPQ3Nl3mav2jTPAN6xvREVyAIgiAIgiCoa6SGmB2m54Ce0nzZpnkB5RtlTSZLo1yr1xuN759bfu9GmQTm1wXlK7VGqVpftmrvr1YuXre+f265Wm+o45UrNs2/u1y5eL18/nr5/LVyoSjQPA/0jOl5rBf5HoIgCIIgCII2V0ayZ0xPgV5H8wTlKzqVa416o/n9c8sXr1vvr1aWrXVA+VqjUanVVyt1kl1z4RpFefpywVaxRCP0l1cql25U3hUD84zmz1/XAL2E9RAEQRAEQRDUJVKizDLTU6DnwvMr5fqKP5pvNJrfP7d84ZpFcmw6jfL2nNfVSu1aqXr5RvnctdL3zy3X6o3r9gsFomtW7epq9f3V6uWVKgvMS0nzlOYloL9evrhcIXoXgiAIgiAIgrpJKtbzcz55oCfheUbzJGneTrNpkMrxvBjKn7tWunyjfK20PihftlH+vRvlQpGiPMkHWi7Xli2y5qsTmFcz5rU0z4BewHpeNuJDEARBEARB0KZIi/Uq0LOUGxKel2i+XKurKF+tU5QvFEvvrSvKr5RrxVL10nL5nasU5VfK9Rv2dN0bZbpu1FU1x0ZJs3Fo3sD0EARBEARBENQl0qaQSEB/hQN6QvNCbN6uV2NC+Xeuli4tl4sbh/KNxmqlvlKpM6BfLteulViODUV5PseGBOYZzctAbzM9r01/chAEQRAEQRB0QUkb0QG9QPNOpo0dmK/ocmw2B+UbjSbJ7ynX6qVqfaVSZwk2Tq48Q/nrFNbPiSJxelEWBEEQBEEQBHWlBHA9p8AtPymUlXghlP/+apWUm1yp1Etcvg1QHoIgCIIgCII2QEB5oDwEQRAEQRDUkwLKA+UhCIIgCIKgnhRQvttRPh8aSfeNpAcnC4WpXF80X5hdHCT/FPbJxbmdZY0upopWoViYGNX9VLOnqKlcHz2/q6ZyfSPp0BS/kV5RbK1VKFrxqGYjr9Rkpi+a9zrE844yE7NiC7U32P6jEc8/uzho6ijuR/atFSZG+e6S7yUUzSm3I55cvh3pDJqWpCYzhh7w4Rvyw/VWPKo5JDWZkZ9LG2rt3g3fCxdXgSAIgqDe0CajfKPRuLlQfp/ZhD2nchrCIChftAoyk/EoT/d3wNeBHokdFc0uDraO8vGo24DBcDkFgmWpTWX36F/SVZxzpiYzHSA5ZWCQmsyYxifCOIQdOLs4qHSRFn/p7RiGZIOThdRkpi+66HSacdBSmBj1GETpHcMwNvD9CMwwLQ7YvLSWezc/R9MgtlXNxHYEgwFVoWShaMVDwUAw3Hof+lYirF503TUT2xUMBoPBYH+M78BDIbI1fEjYPzkcDA4n5GYHg9qdhaOCwWDQuSN7C7WB8Rl98w6F+KPkY+WWOHcknzAVGQjqbtPcQnZrppsy7MD6U3l80/sGAoGgqIGxtP+HlR3bGQwEgoGdsWlf29tVIkybt5u7hXRsR0C5inZjMTmk2QhBkIs2AeX94PtWRvl6valKRnmqwsQoh5g61HZIeiTdF815oryD1wLxFCZG06HJNlFeREP9gEFHzwawo+AoRFiVw/2Qt4jyZsKLR1sFSrHb6WsHhVbZOaVoPd8SOZAvjFgErOcGcvJ56AfW8+yDn2i0B6PTnm+xf4RGRvOmkZj67qWF03rcu1UoFiaiHoBOnmPLYxs3Zcf6g4FgcIhh4kxsR5sonx2LtIrjyaGgePX1VXKYom1ymKPPVGSAfk6EHfa1IVUE6Ox4SAvH3A799JBDoeCuSLZQtFKRmIO/M7FderzOjvdrmDgVCZu4nzZYMzZIDruNizQtLDj0b0R53Q7JYXrp7Hi/cypHhH0J41IOboXm+cP9bG9DjM4DwUAguGMfuYXkEPlMfkoR37hRORyCIHchwWbNKP/3Bw/9ycc+8Scf+8Tf/cOk587+UN5XtgMXSmwpKk93jkfTg9HcoBMezsXbjcr7QXlOXvF1oRn5EGmYcAg3wnELwfIozw4R+V6TreRLPGSTYLzcDxx5x6Ni0Hd2cXAkM6hLCJHQVr2K/FxGF1PO07F7XtsnUzn+cHPsX3wQbeXVGJ5FR6LyLdy7OZvIPsO65NUoKN+u4qE2Iusbi/KJpIOhToCZ8ahVKGbH+3ksdqiXaiY27t5UaTCgUHsqMqBBXu6nIspnx71HR3z7SRtiHvRvauFMbJd7VF7cQWit9liBuWk0vQXeXX+Uj++mQ4v4bicwT94nDCVYmwfG0saNxHXpK4jdG/JmCYJ6XpuD8o1Go24bC9I3Gg0pYE+2dDXKPxk7wL/ofTJ2wH3/NUXljRDcYoLNVK4vmgvZ0W47RSHvmmBjJDAxPp2Le6C8yyjFvjUZ5TODck5IyyjPEDk1maMHUk7NhKIZKTKtpAxZHIk63StA9mhGk8hOuojlb4jdqBs/5EMjUva8OhQxPI6RdN9oLjSaDk1p+j81mekbyU3MSvMr3Mcw5Em1kVRjyx4J2K8s1nAqd1fU3Tv3GkcL6/mQr6Sas/tjS8mi9drUwp7Y/J5n8q8VreSRhYNzLofwKJ8dC1E8mo4MBILBQHBgbMbJhBlKkFD9wNgM+cASY+hJnEO4LTsidqST7Z8I29tdUd7JwGEvB+yTcIfYLSH72Nftj02T9CHT6IKhp8igfKBaRXlDHg7nugKLK5AtDxXcD3eSefSpNfqr2NF9YRSRHe+nW9xaKOO48O5C3UFMB1Jv1ojydu7NwFiabAzHi1yiS8B+3PTw8NBO7XbbV52zWU6YfHeS0vnO2LS90W0UkQizHciBxMHYZ+1Gdnh8d6vpQxB0M2sTUL5Wq5XLZcuyLMuqVCq1Ws095aarUf6P/vgjPMr/0R9/xH1/gvK/JVo7KC/zLmGmRc9prywJwWZxQmyZidn2c+VtIiTN08G6kOHjPhrRReWLUnoJF1k3sZ2AcU6T6LhFg3H5kJPek4sXaeycHU4AkaXi6OLlwsOyBw/5EJnAKlxOP1VAGBSNLqa0kWy385B2FlKTOZ5fyTuBCTEMz/LLzUFxw5DMo8MdsR4bnCwUZhcHR3Mh7SiuzSR173t3jcp7ztawCsWLB5+Z35+yCnP5vbGlZNFKHpnfO3WxUDy7P+ZC8zyFBwP9LNJJthMup7g8FAoPRWI7ggNjidgOgs40Gyc7HQnz+e5Ock4i7GA3QfNQeCgUG+v3QvmZ2A6K+9mxftqw6cgAucR0hEZDhaEFaTwh+P7wUCg25vKiIBHWJNV4oTz1xsiACa/FwxW6NWbXcGdWG0xSfYxvPHQMTUcd+u3GFrYRlXduxwvlhQQbGtge2h0e2xcOBMLxdGwHJens2E7dIQT0SdibOy0Llk/vG5CGBIy/A4FwnNK8MWHMOdw+p4T12o3kxu0cG6A8BPnUJqC8ZVmrq6srKyurq6ulUokAfb1el4LxvYHyv/2BD/Ao/9sf+ID7/i1G5XmYy0zM2rDITZe0+U+OyjvSTHslp+WSOliaTYdQ3piOP+WSvc2hvG47R2Yc9/tNsLEKxUKqtVQKO0buOUVhhO8BJypMEDZESg8p5VZkSp5dHGRTHUw3pUx7EIFY0/PONAAhSYn1jMsrFM9EKV+i7jGV6xvNhUZpZldoyukfvcu5ye+9rxHlX5taIGH4Qmppj43ye46cpT86ctZwoD4qr0X5AJdNsUPgfobpdgJxUARrG5rFELvlgvLktYDE62TjDo5E2YWmIwO0tXQuL2256a7H+20kbR3l1aMK+sNlunXPrimYUF53Kj8/0p6tgyhPXhrQ/nFJsHHEHr2cbMOlr3ARbiH6zrG4s10O6g8lBOjnmNsd5bNjOzknJGfYGZvmG6PdaJ+BGzO4eB0EQUSbhvKrq6uWZZVKJfZZDc83Go1ardbVKP/FLz3Co/wXv/SI+/4+UZ4jRQE42HZDdRd3QKG4Q/DORnAug2WNFWzUBBsOSe0wtmeOkCEqX7QKTvzbJ8pz4ocH0bx+Di4fn7Zjz6bUc3MWe57PXCoYGmmY7pn3hfJqCrs89dNS3ucIF/U3zbeTKJ+azAxO5vW5VS2hfCv3vkaUt2PwJLvGRnkR7nUHmnLldVF5fh8u68b5JwFHHvT5zwLuE+lQPhG2M3l4lBc+B9g7AaH2Dofy/W6J1MJc0lYSbPiWD5OjnII2weGEe4KNkF1j5+oI6TpmlLcOhVxaYqB8Q7K+7wQb3QnFHZxSOdr3BsakdifdnGzRp694o7ww67R9lE+EpdwbofyOnMmjr1eDHBsI8q1NQHmC7yQYX6lU2D9LpVK1WuVT56vVaqlU6mqUP33+yufD923btm3btm13f+EvTp+/4r7/2nLlCTerFOuF8jzuTLK8EQrxNPDc5rRXHqHYFFWXRHZ/UXkDyhfUjV4oT/hV6Dflp8JGAossN2ZKXy3eY0KqF8oX+F4S3pY4KD8RlftnwmFTr8i0ew6PL3ruIMovhug7pQ2Jytv3vjaUv3jwGYryalS+MJffa8yxaRflnX2cRBpfUXkvlI+HnAC8FJWn+zjnJIeLfOaJ8omwGBrncVaTd24EaG2qDB+tlyL3Xtk1BQ+UbzkqX5iJ7VLP5t7CFlGe6yhdG3yjvN+oPJ9440TlRYBuGeWTQ2y6aiIp7MAi/Z4bxRQdCIJctQkoXy6XSSS+Wq02m816vW5Z1o0bNyzLIlk3JN+mWq0Svu9qlCc6c7F45mLRz55+68pTKZMdRzODylROT5Tn1yTiskEE3ExNZpyCNpLcUF6+osBPepRvPypfYDu0gvIukztVlBd71ZlawE4Sn6SJK+4ory8kL+7AXUisrmO4Ka5tImfzQzV7YSnNXTtp7n5moHYO5aO5Qep+vlFeGOq4Nsx8752Kyiu58usQlbcLVhZm7KR5G9OnI7G4R668K8onwnxwXc2VpwVD7KR50jCScjMdCXtH5Xm6nYkN02KRXDFKqYCMAeVTkQED4gulHvl9PLNrCi4or4Vyuw9NKG+gf2ML20V5XfV9IppgowKuguBuufJO/gyNnSu58jSHPhFuPSpvV6mXY+10u/i9kDZy6T1FK74bxSghyKc2AeUrlQqZ81qr1ciWer1eq9UIuJdKJTIpliXe9ADKr5sIyhcmRtMCH7NqkkKSuuUSi7XnZXZ6iSgJOiUC84/yPJ0bcuX1F/VYiVbKu5BPaIzKj6T7aL1IeYUjcYpC2sDNWtyU2mbXkHG6nXtloXsQHP17RqaVA4UbJxdyZ1mpnE47YolM9ohINyrzmBWgf6a+7t2lmKbbUMFWaomm04gVbAouufJSggoHi3YFm2CgPzatVpKZiY2FwmKBGjokkP6pqWAjkb1G9lWU605HYkMhvk6OcFqH+4XrcuKSYaRy7DTdRYiaO2sz2QiubtGK7ibu41G7psCn3NjNULeoT3AXl96j30KvHhSnqCotdDqHf0fBpc0oO7iXoheXiBIC586PdorTLdQKNruTbLsNyg58O+jvrPHkpNwM7XZOOLSb38fpFoHjxQGAVFnSbWNAhX4Igly0OVF5guwkKs9vZzTPJ9DflCjPgNKtOiQFen43fRa4x2qvHEHSio1+l3MSy5Mr5/dGeQ7L+AWVNFF50yKyXjX4ndcR3NsMw87+C8zro/J8dRf+xo1gykoPsSGZJiqvq6tojkzLkygMLCt0nbh8VXtZ7Fof5ha1dXlG2gXFzM/C571rJDx679kCdgUbebt7BRsIgiAI2kht2rRXHuVJmflqtcoon9lNHpWHoJtQmjm7m6SLB5+RE2m86spDEARB0EZq06LylmWRApSNRoOk3LBgPPkp+ydQHoIgCIIgCIJUbXKCTb1eJ0VsVlZWSJZ8tVqt1WoM7hGVhyAIgiAIgiCtNifBhhWgZMnxlmXxReUJ4vdMBRsIgiAIgiAI2nBtWgUbNr21VCpVKhWC79I6rySBHigPQRAEQRAEQao2COV5Rudz4vk1oUwGlIcgCIIgCIIgVZuD8qx+PCstD5SHIAiCIAiCoJa0cSjPPrDkeD4k7xKbB8p3gzqz9icEQRAEQRDUOW00ytfrdVaaRloiCijfBdKv5pOL61Ferv+dmsyEpsxLeLYgbu2kqVxfNE8a5rKEk+uiQvLirMoaUpvd7ayRrTRGXJ/LU+KawWuQrqvzIXNPpiYzntflli62xS8A3FYjjct1Gdf39bV8Fe+Qum9Ky+0kl3Bbl01YMU1oEu8DUh/Go60/btdvrvrcPTzQWW6MLJzs1bEQBEFQO9polK9Wq2SJKLKSK1B+g7TPbMKeHD95rORKN2YmZn1SiA9xf/udEQLHXi5Q6Iny+p+qYNeCuFVyR3RLGk3lDE0qTIwqzMcvs6qXvRCscQfpnF7r4Jqa7SHVE8gWt/c2nqMU5wF1DpHpFWcXB0cXJ6L2eeyVdH0MnOzFd/mN7AuijjTaHHvIdG5vVE7lnN/5Kf2STuXktYq9VtjV3bu2JUKX+kB59qXITEzaYx7hO7sh63/NxHYEgwGmULJQtOIhtiXc9hBRVHIoKJxzOhIem/E4ajoyQA7ZEcmyptLP7epQKEhsOCF0wq5gMBgM7hJPnooMBPtj4m/R7Hg/PcMuQ0tSkYFgMBgMDozPaK5rOso5s3TFmdgu8VSaOwolCy0ckhwmTXGOsrdQ0xxr35Su/TOxXcHwoc74CQSttzYU5RuNBikqD5TvgB57/InBOz86eOdHH3v8Cc+d9+3bV683VbWN8kKcm0PtTkTlxT/2xrMJTdroqPzs4iDPPVM5KdDooKTxcHG44jLsselT3C6CpoYjnW6UGuPeV26SBhLRvPiwXCjNDPrCOblbWHtUnkP5FNvCLic8HVdq1z61Dg05+Ba6PSDNEC4zMWs7NrtT2oDCxCgle9+vbpxDdE3Kh0YyoWiGDBj0Q3fan6Qn8yEb5ZV72bClfLNj/cFAMDiU4Ld0CuKtQiIcCAYDwQGb3QnWD3iifMGm+U6hfCoyQAg+FRnggDU5TD9nx/sdxKfwLYF1IiyMAXQ3Sw/hANcZEpgh+1CIUnIqMuBAdiJsYmvymCj98yjv4xByC9wVYw6Iz8R2yaMXqzATG7YfgdJ+0gagPNQr2lCUZ9k1BOXJaq9A+Xb02c/dPRwKT6fn/iP18+F77v3s5+5237/jKG/vTP4q8/HptoO+fqLIfKRfRfk8fwZp4NHRqHw+pGT7pCYzDsn5GcywfUifu0fllbPJQWXNgytMjFL88h3Id7rFyH9CjynPfTQXMoBaPOpGuuudYBNnT2eK8qXQpdrnJY+g7Fg42d6xqLzOMfwMMmcXB6N54Uuqe+GgH8TKZy5MjPIb1S97PjSSm5jMEI63n5SzGzdWlFB+UXpxF5raJJRPhH1ytj/pwT0eah3l13ybhxLsPNnxfgM6S1gscu2hiIK54iWkwYAEzdIOjoTAdnJYIGM20tBLaL/nIfwd6ag9FRnQxd2z9m7Z8X7hzKlIeDyBqDzUQ9polGfl5MvlsmcZSqC8Xs8dffljf/opfsvH/vRTzx192eWQVlBe+4efcrbAW1O5PobyduCTj8rHo+39zZb+2OuSDehuppGD6zuEtUflnRuXu04TCqUDHkq9pkRnQ+hd+yNdYrqQfUHatoaovBnl49F0aIo8EdNz0UW4i/nQSGZw1DjbgaG88Um1+J6H3DI5rX373AQM+hDt9utGdIb3KvbddSQqb4/fuN7Oh0YXJ6JpOi7lGiD3DHvVwG2kc0u4vvIRlS9oLqR61+hi3BxfN6L8aGaQ+82QmsyYUf7s/thSsnh2f2x+T2x+79RFsv21qYU9sfk9z+RfK1qFopU8Ms/+mTyycHDO5b44lE+EA/2xadXrQkq+DY21kwEAPUOgPzxEP9CT0CQZ3TkL/A7iPvbG8JiD8naKTijpXDpCs4Mc1rd/5JkgxPCa42wlV0RCeUMeDieBoR3IToRpmFwb85YvJOH+2lE+O95PXy+IO6tn5kk9ORyUU3eEvira0Xok2EC9pI1bIoot4Foul/2UkwfKG/X1b3zrb776dX7L33z161//xrdcDiEo/1uiuUflqSjlUDjmY89xln/cmag8kxnlnUGCHHoX8XR96+0IAXhHjLB5lmU9k4uruf48QfqLysejUq/y4K6+teBISzxhuygvQjzXZvdMJ3rj5rg150udfFLGtzGaB+r2IoiPQ3d8njRH2/Rp2s0WXv7I40N/YxuPqDwZkPB3xI9w+P5xTZVxjcqnbYh3QfmLB5+Z358in8/uZyg/l98/dbEwl98bm9+fsgqppT2xpWTx4sFnyA5n98dcaJ6C+I5+PXbHQzSsHg/ZP02EKUCzED7NuR8Ym7F5mk+7l1nTViJsDwaSQ2w3dnIb3ympq6ftj03TfcLxot2G/tg0vSOXHCHGrCI3u6M8VXJYTbzRHc5zsz5dR7fnOqC8I5HFld1MIw1218IwJjseklOJIKjrtaGrvTYaDXVJV6B8y4r/8AUpo+azn7s7/sMXXA5pI8GGSkR5Z8vs4iDJppjMDU4udjQqL00ntf/2S+npbrnybhS79ti8B8pLfcgnWEvxdTncLuYr++0rl/T01vrfOxlDCEWTR++8hSD/NdW3IU9KZWv2gDqbYEN8j94RTbCRb83nYM9usz1Y4l5S6dRymymjc37C9ZLQdcroTv4KaBOxzLepzHOVpnAobk+j/sbvERnmCbnyLKPJBeVfm1pgcXcB5YlSS3tiCwfnSIR+KUli88/kXyMHHjlruDsb5UNhOchdtChP98emabDcZnqO4HdEshxG24cEw3EWrTegvHMeDr4JppNsHyHBRkF5ZwxAqF2/g06JsD7jxRfKK0cV9Yfrst51R3UNyuuza8R+Y7eQioTpsUB5qJe0oSjfngHlNfqDP/xw5Dvffedq6Z2rpch3vvsHf/hh9/07kmAjTescnMxPjBLUNv1pbxslhQPVGHyhaLmivAvguqay+JQ2wYbFUKW4pgvKC7TqOlWAmx7gPSyhO+dDI5mJKWMlE7cxg0uuPD2zJipvQnkxU0X/aDqeK89Qnpy25UKKatumclyujrpb+yngds6Sc7jQG9ybKCUqb38F1OC6sf9dBtg82Wsek9yH5KLyV0lBeTs5x/YTTUclj/DsLqL8XH5vbJ6gPGP65JF5SvA0Tq+9HTHBtiUlkgAAIABJREFURkptl0rcBAfGZmxAt2VGeT58brouj/Ls5LQBraG8HJU3peMnhzn2bSHBhn/ElHqdgjbB/ljKJcFGzbSxj9sVya5zgo1pZzUPx+1CYndJRW9cJtpCUFdpo6PyLcXjgfJG/Ty78Gefvmvbtm3btm37s0/f9fPsgvv+61DBhhSbd4LfmpobbRKz/MdemDHpnFaD8k4M3g4HqvelCSu2nDKhy1ZnBN9GVJ6OoHIhJU05NZlxHRGZBy1iPRO5uo47JXujfLpvJB2K+ojKK8MeU/CYMffax4QFHcpro/JukyhMkW8ya9Z8VKuZXeqgQpsXZIrKc4M36dFzvmH6LjhS3gh51dWJ2wn9ygRZ56UN/RqOLsbt8vm6MQ9LmCH/VKLyxYsHnyHsfvHgM/N7+GT6ufxeY46NMO1VSYvnWJndkRrzNqC8kHjDnWE6kZzueFS+yA88TByfHe8XQsg83cpY7Iryuvg6T+HsszwX1qOeoxzkXrdpr+pMAGN2jXA5uf2IykO9JKB8b6I80Zl3i2feLfrZc13ryhdMBGZAea+S3twfe1qlMcNomAsxehSj5LcIy+X4HmO4tVOq5C0Uo1TLRJpR3l5sSKpr2WeXQtfHzh3M4mdhKsSsmcvotpYTf3dehSP9ReXlnChjx7YZldcldtsn5BJs7Oor0hX9V2mUUJ5+nvVdY9HcTu03y4Tyxqh8kTleLu4crg7zuIUghP43zAEQZwPzT9YZj8mOJ0bl9S/T/EblWfT9takFtgPLrikUfUflSQeKoXTyT8LTtB48oWqyw0xsiEXllUSXAjeHlT3W6cgAT+faXPlAKOlk/vhGec/COIdCDuMeChEA5YtRigRsRPnksIl6+WKU9j6HQixLPjlsyLHhi1GKrNxRlBeLUfIt8c6uoWdWqB0oD/WSkGDTyyjfea0B5X1H5T3npBacvB2evwVM8TyP81MS1A+xCaN+Ud6zncYlosSJjDb7MvDl5rDqutQjIC1WdWQoX0jRa+kj8abkpbbkJNioFXscT1Bq7cu3KRZaaQPljekudp6YgJ7thc9FVOXnd06MZsSiSW5Z5obhExfD9noo3ihPNjrDBqVJwosa3oWMxSsHRwV856oMcY9GXaCKbdfcta6jUkuUzmk6DY270/I1MQfo94gBe2OuvLpElFgERqgew6XRO8tI2UC/IxgM9A/sUMrRqFfhc/G1FWzskw8MhQbsELvThqEQa2F4KMS1XM4FknLluWQYaY0kO91FQlt7P648vLhF78N0N34f74Wl9EXiuTwc0wCAS+8xHeJUsCkULd0EVkuXXeNUsHGuor1xoDzUSwLKA+V56UvsUbDuUFTeVMSQu7r2QIrCMkMYFc0XpACwyxKY+rKD7eZqt1RXXrgRFekcuA9NcSVNpAC5LadWDK0Yo2IrP1poe14yQ/nFkH0erna4aTqBIEqEtJGtrmVLz+Azm6XFXHmxIpMYmdZlQBlb6HEtBrsea/3SQayTFm+3SlOMUu7htMsO6j6a1VttL3WWbjCsFKtJOZPX4TJ1FF/Bxr/cK9h0QkKCzaaJW6fWJUcfgqCbVkB5oPwGq81VmXqsndqMcE6uE3MhX1rDWAvt7DpdPPiMKVVGL6+68p1QN6C8VBR/JrYDKA9BkCCgPFAeWifZ+SeK+PQGCIK6U1xNm82kZ7G0DjgegiBZQHmgPARBEARBENSTAsoD5SEIgiAIgqCeFFAeKA9BEARBEAT1pIDyQHkIgiAIgiCoJwWUB8pDEARBEARBPSmgPFB+/eRRLdtU0N1lSR3/Uqo9uiw5JC8aJa3TJB0lFh3Xq1OFJgsTo4YFX1vfU7OMl7bn23pkHuI7X+8VrMeUB+ejRD0EQRAE3awCygPl108yIvstsN0BlFeWdNWBrLy06uBkITWZ6YsuOuth+V0alruucW2s1uVjxVP/e0rrsLbO6LS7fK7KJDfP2Cfculf0nzK4pyYzLgswrV322pwDY+aV5BXZJQI3vjggW/nSWerSKjirV0pLVCaH1TU1E2GvBT7p2pn6RTr5jUX9mbkrsjVBpXU3lcbwp9Vu1BwotJ8tXGpefFRzFHd3WN0TgqBeFFAeKL9+sjlYXXVSZEcZqX0u9mmSvPj8ZEETSuexlfE6/cCWtuXXuC1MRD0AnVzXXxDdRd694TTJ355y/wvI7izZ6ya6yGi7PG1ab2sqp4wNGMqb3n6sR4SecHlLKL9Z6wclhynBO0vQFwjFks+JsLrcvYjy2fFQzNWTs+P99JBDIYbFyWHK4tnxfgMrOzTMdrZSkbD9YUAae9BDSLNnYrsYgms3irKpnYPvRJjumQgrt2w+irtl88AGgiComwWUB8q3oqBibvtzKK+GcqXQe2oyw/bhf+QnLUQSfzlyeDwqErZElqSdUzkbVW2C50LyHqu30jh3RyiTHz+4353/PV160hPl7QFDe+9J6BhAC+JSAF4cmWzoksC9g/KJJA+vQQWdC8XseD8f/3a4nDV7XIe5Bf60/GCgP5bihwpFYwCb434rFRkgn1Mz2YJ4Kv6QVCLJtjDW127U9j/fjEOJJN8SYzhf1/hUJDyeQFQegqAeFVAeKN+K2kZ5Hxkd+ZAdoHVQfirXN5KbmHUA1DmVA9YsfEu5UEb5USU9g6C8Kc9kNBcaTYemHFDmMsi11JsPdTCppstQntx7O0k1QkvIJaRraXJpxI1SYN7YztemFvZOXSwUz+6Pze+Jze9Pke3cP+fye4+cNbeQoTyXNkNIPRjcwaLCibC96GY4XuRRnq3HOTAWYfsMjM1Y8ZBzBjuNh9F/coj8MxRTc3V85fwwKpWgNsRHsmWUN+ThcE+cp3Z7kCDCMT9ysPQX4scDxkNEyYdIG7Pj/WJOkTklhrsF4d2F/qiZ2HAkiwQbCIJ6VkB5oHwrahnlo/mCv6g8v7/9o8LEqIjgLCN8dnFwhNEhl0aiXM7mVwEilUtrwsOhqUJq0plw6RqV1yJp21pflI9H08ocXy+U78AUZPIc86GRzKApKYheRUJ583RYptTSnmfyrxWt5JGlZNFKHpm3/zm/d+piYS6/N7aULFqvTS3sMdI8F5XnYu2Ep3fYWR87yOdEOBAMDiWkqHxyyAZxSuEUH7NjEZr3Qo8iBB9yNvLQP5RwzjCUIB/CxqSmRFiTVOOF8vSxRgZMWSji4RTBxei4lsvFjXyTaOK7B8qzQL7nRiozfB8K6W9Nd5SdbgSUhyCoVwWUB8q3orZR3oXefFVNMYXwdfMpdbnylhT1tzcq6eZCrrzzYmGDUb6zufJ8J+vm/q4zyrN0Js00aM+ovCfKn93vhOGtQvHiwWfm9xw5Sz7YKL9wcI7sST6o8kb5eEiJkQtReR64ubMlYuQQ7nDy03C8aKN8KGnvQFBe3mFIT6XZ8X4bPVtHefWogv5wG9D5BHQ99ZpR3j6tazI6mwPgudHpfz18s1R7H0exVH6gPARBPSugPFC+FbWE8owCufCwU8TGxIgMOo3xZjsxRkpnZ9JF5YWr0412GrdzIXnaq8VIt5ej8oWJ0XRfNN9+gs3aUJ51nTxjwRfKs9cyhk62g+7kn8kj83tiBOXP7o8xlCesb8O9ppGeKE9TaIbEpPMdwWCgPzzEyNsWC8zHIyRUz+fi86CvRXk78caWFuUdBi22lmDDKTlMjnIK2gSHE/oEmwJXH4YVlrFzdQijuyfYWO45NodC2uR7V7bWw7fXpF7hKLtQj2NeWUAQBEFdJ6A8UL4VtYTyHLoxXiRwZsDH2cVBpyJkXkkFsedQRvNCVF4pq2JGeXWjV1TeJsheRnm3rtiQBBvTtGATypNnkYsLr1wMnZxa2sOhvL1l4eCcGpW3kkfmDTk2PqPyXN580d6T5ccLkWCK42z/1qPyrlnyrFqLfTmOkiVidkV5bcxbyo2R95Gm1TrihxDicMLjwFRkQJsCZEySsftfRflDIS8Wd4nlIyoPQVBPCigPlF8vOYzI4aAdZ3WS3S17e1ooF0P2J+yubneyZYSlkeKTcsEcLb+KYwxDVD6a4zNSOo3yLis69QrK26MgX/N9tWVwtBVsnC1iFN/eWao+xKLyQiINTZrnc+X9RuUJhXOTWXfYJQ75Ca9DkayQK58IS6AfD4mhepdceRnlxWz7RFiOyvMJJGTKplSMUhhUGFHezMpCMUpxH12Ver5hTkUdBYvlhjnbd3ETi+nJtRuNl9PckfDWwvUoj+0QBEHdLqA8UH6dxGeZs8A5H0S3aT4elQuWy/jIgvFOZUMye1IuQK4to65dGcqYbi5H5cU2aNN+5GGJH7nQ/7rkyhfaRXk2mdjwfD2GE/bNpu15zGk138l4XV1ivXIXFw8+Q/JnaL2aPU5CvFrQRp8rL9WWYdVjhkJCGRlxN1a1JrgjkiUgLsTmZ2I7RHI1VrAJBodCYm0c7uQBCX+5ZBgpIYSmu8h1Y6hx5eGlLVrR3fjiknYijeuzlme4chksOo4Xknbs82s3yhVsnH6g1+Kyffh+ECvYKEc5AspDENSrAsoD5ddHtP4gY3dW+VEq6G5Kl19DUoc+Ks+XnnQY0RyV9yq/KMzWbbW1bqufdj4qr5t+wNV51LSErwLpNeTwiMo7s435hnn0m2YKhDNukW/ZrmDj3ueuFWzWQTOxMff8EAiCIAjqgIDyQHlow9XGuleQm1JLhswZWx515Tsomj9jT3iFIAiCoHUVUB4oD0FQx6SrdQNBEARB6yWgPFAegiAIgiAI6kkB5YHyEARBEARBUE8KKA+UhyAIgiAIgnpSQHmgPARBEARBENSTAsoD5SEIgiAIgqCeFFAeKA9BEARBEAT1pIDyQPneErfqKq3OPpWTlw1iCzA5q8OKoisT8QshGWRawcpjXSR7N3l9JXpFZV0n70Wp4lFp2VrtIZ535Lqqbgcejbh6q2alJ82P7FuTVsCV7iUTimbk2xFPrtyOeAZdS4xr2frxjZaX+NUvrKuudtyGWrt30/fC7CoQBEFQtwoov8VRfq6yM9AMEN1d2ow2XNt3S3Nn9FpRXG+1RVzgllZ1DuEXWhKYTEB5sr8Dvhz0SOyoyGUxWte1Ws0DBsPlVAiWpTTVbb1Yg+SrOOd0ll9dA8mpAwN+2V21l/gVeemBUzmli/T4S2/HMCQLTZHhwSK7QfOgRbMYrbeIJ7fa//wjMMN0i2uHreXezc+xjQWM21I8FAwEg4FgMNCvW1FrJrYjGDb7ISnhT3ag5fwDwWAglOT2SQ6RjeJ57OsOjM1oznwoFCQ2nBAasysYDAaDuyJZobsiA8H+mOgJ2fF+egZpZ2kfzamCwWBwYFzXqkLRKiTC9LzCPdI7HTYfeCikHpIcDupuU74F/pzajaLz6G7B+74gCFqTegflG40GUJ7XY48/MXjnRwfv/Ohjjz/hvue1fbc0d6u/+k07311J+29GsuZ15tJufhTBI2k+1DIP5UM8YmpQmyPpkfRgNOeF8g5ei8STD41kJibbRHkRDfUDBh09G8BOGgKNLqY0h/sgbxHlzYRXmBhtFSiFbqevHRRadc4pRuuFlkiBfGHEImC9umIuO4/9gfW8/cFXNNrDJ0nPt71YL222YSSmvHtp4bQe905c0QPQ6XNseWyzFs3EduhRnid1w7MIiTskwiLKc3zPXSIeop+nIwPq+VORAYK2qcgAR58MlLPj/Q77UuiXUD4R1sExL4rRAsonwvQ8M7FdwfAhXUftIrc2E9ulDBIOhUysbPO3iPKpSNgFrA+F6KkOhYJBuzHsEN3oxXwLnvcFQdBa1TsoX6vVgPJMn/3c3cOh8HR67j9SPx++597Pfu5ul51bQPl0tBG4xT/Kl3YHPM/sROWLlsS1qcmMv+ivn2wHLhDeUlR+iuxcmBhNh6I5Jzw8uphqNyrvB+UdecbX+WaQneXEFWeE4xaCFVDePkQK1avZSr4kQHY8mg5Nyf3AkXdhYlQM+k7l+kYzgzqYFtFWvYryXKJ57unQntf2SWoywx1ujv1LD6KdvBrTs+hIVL6FezdnE9ln2JS8GgPKT0cG1Gi6hySUT4R3EN4l2+mpkkNsn0RYWZc3eyjBENkJnKciA0HutAIWM1S1dSiiw1xFh0I8jssjBHUwkEokndGvBNOJ8HDCLSovtJ9cLuLyezt5yLl6ctgO26dm7NbOxHZpUF57C973BUHQmtUjKN9oNCqVClCe6LmjL3/sTz/Fb/nYn37quaMvm/Y3onw62qC5N4FaQvhnY98cPZD7p52uc3cpHa0kSLjdO3XHiPKEZiSkE1JTChOjaROz0jNoIbjFBJvUZGYwmhu0o912ikLBLcHGSGBifHp0MeWB8uZRCrs1GeUzgzJtt4zyDJHjUbs/aefnQlEpMq2mDPHNJrcmQ/bgqDzaYSjP8jekbtSMH2YXB+XseWUoYngcfSPpvmguNJKZmNX0fzya7htdjM8WxGu5j2HaeIkkynZv+spiLadydUXtvXOvcXSwrn4ZtZrL730m/9pcfm9sfk9sfn+Kbk8emd8Tm99z5Czdx/npxYPPLCXdz6lH+eRQKDwk8TdB8EQ4EAzuiGQ1rC9H5bmzsUuQy3Eov8OYA+PQtoDdUnRZQnlDHo7LyUkLeRBXyFuRcNHkcCjpnmAjn9BO1BHAOhHWJdsILK42lTtKewst3hcEQe2oF1C+0WhUq1XLsoDyRF//xrf+5qtf57f8zVe//vVvfMu0vwnlS7spozvBdT4qn7ibEry98dq+W2oJq1BM1gj6+4vKFxJ3c/vw5CoihZj6bIAqM8pLvEuYadJz2itLQmAsTlqYixfbz5WnjafN08E6n+HjPhpRb210MSWll3CMbmQ7oc+dJpFxS5+KcbOLgyy9h7RkKtenjIvsQK82Xi48LDp4mF0cJBNY+cvppwqIg6JoXh/JdjsPeetSiAsvf8g7gUUpDG/nl7sExfVDMq8OZ2JjnnRoijzTnH4U116Suo97d4vKe8/WsArFs/tjCwfnrEKR8jpF+dTSnmfyrxUvHnzG3sL/dC6/N+ZK8zqUj4fCcYrvNqlTTA8PhWJj/YS/xR2KZpSfie1g0Xd+HyP6E2XH+zVJNR4oT5UcVhNvRLkMDzyRNxUZYMceCpEDW4rKs4tq0+6lGxFv1pT1rr2FFu8LgqC21CMoXy6XV1dXgfJE8R++IGXUfPZzd8d/+IJpf88EGydwzqE8F3SngXkxvm7v44wBxAh9OlojIwE2JChawnt/tZqKJ9AIMJeLM1h0pkva/CdH5cULSShPTssldThpNp1BeXM6/pQ5e5tHed12p50c9/tOsLEKs4XWZ83a3SXfvi5XviiE1SnfT+VI6SGl3IpCyVM5NtXBdFPKtAfJf9Se56YB8ElKTs+4vELxSpTyJeoeqclMXzQXopldmYlZp39aR3mf975WlE8esePuRQHWX5taYCi/d+qi9FNyIN2ulYryifBQwpJJXUiSIfKL8tORAT7rxi/KJ8I2LreB8spRitaA8slhdkUnL791lPc6qsDNHJBaHlSz3oHyELRp6gWUbzablmUB5Xn9wR9+OPKd775ztfTO1VLkO9/9gz/8sMvOrihvl7iRUX6uspOG3o07cyhf2u0QvMz0OpRXE6ZdJ/zxpMgDB9tuqO7iASikMQTv8hTBZxcHRzKDo25c5beCzYicYMOhpx3G9swRKuqj8qzTpGwNv+VKuOHB4GRBOweXfxz2QCszMastMWnOYrfbxm/U1rrRPH378XmgvJLCrkz9tOT3OcJFfU7z7STKx6Pp0JQht6ollG/l3teG8lzQvSjAevLIPEN5PseG7WyzvuHMMspnx0LkszYqr1an8UT55BA/TvCbYEOyVug/W0iw4f2Txs6dgjb8nt4JNnaujpSuY4fhLeHMbuVo3BjaLX99JjZs6hzNAAAJNhC0WeoRlC+VSkB5Xj/PLvzZp+/atm3btm3b/uzTd/08u+Cys4rypX3RazTuTjNntCjPITivucpORvA+EmzS0Yrzp0LOlWd45z4njztcQXmVYr1QXsCdSTtvhKahc7TaDsqLN0hO4pLI7lJTxQfKqxs9UT4epeMWU511GWqnchTr+ai83KseE1ILXijPZe9Y4tsShvKLUuC/b3RxIqqt+KmJTHvk8Pii586h/CRpTH5jovLs3teG8mf3x/Qo7xmVL6SW9rjk2EgoT/4ZVCrPtIvy8RDbIRlnwX7jtFei7Hi/EHXmGVSTd25Geb9ReSGE7xbON5+zvai8U6xGc0JjghBLPZI2qrfg974gCFqDgPK9ifJEZ94tnnm36LmbjPI0eT1Zs3NptAk21/bd0mR58+loJcFy5Z30d18oL0itYGMTnlA7JT+hj5Iqkx1HM+pUTk+U59Yk4rJBRNyMR7mCNqLcUF65Is9PepRfQ1S+wHZoBeVdJneqKC/0KvdGxanoP+nwqPkShkLy4g7chYTqOqab4lqr+JWNs2xhKfWunZwuXzNQO4fy0Rx1P/8oLwx13Brmcu/rFJX3yJX3GZXXVKppNyrPxeDtqbFCFXn3YpQFkW6VTHSFYo0o74LC5MzmYpSmA52cH7XkZVsozwpcyuIHM9nxkFxtU3827S34uS8IgtakHkH51dVVoHxb4peIcuRMWiV58DtvaQYIlNv7704WuAo2BPSv7bu7Qc/mTI0V/qlTaXdAXSJKqffCUt75LBpTBZt8aETkY1ZNUkhSd4vF2vMyO7xElAydIoG1gPJ8EoshV157Ua+VaJW6/uIJTVF5e9SknzhrzJXXX9eA5uwtDet2/pWF5kHwIwqvyLRyoHDj9EKuLCuX02lHdiKTPdlaOyrzmBWgfab+7t2lmKbbUIHqtakFmj+TWtoTm9/DFbERKtjofmrKlXeWiAoGlQB5UlPBRtjHsESUTe0ix/PQz3ZWOV5JWWHMaqe78ABtL37EF1+Xt+jEXYVjYvtY/YHcmbXnN6I8W/GKDTnULYWiVItGsF2RrLBRKYbD+kR7C+73BUHQmtULKE+mvZZKJaD8zSu5TqUgO0JPgZ7fTb8Sk/tqrxxB2hUbDTkwcnJ5XqyLIp/fB8o7WCYsqKSJypsWkfWowc+9juAKmxh29l1gXh+VF6YyczduBFNWesiZNauJyuvqKhoj0/IkChPL8l0nLV/VXha71oedRW1dnpF+QTHzs/B37zrxj97HbAGugo1/eVawaV/ea0hBEATdBOoFlG82m5VKBSgPQdBNKc2c3U3S2f0uqTIa+agr346yY/3BHZEkUB6CIKhnUL5Wq6GuPARBEFTgkuB1k1YhCIJuKvUIypNVooDyEARBEARBEGSrR1Ce0DxQHoIgCIIgCIJs9Q7K20APlIcgCIIgCIIgCygPlIcgCIIgCIJ6VL2D8kiwgSAIgiAIgiBOvYDyBOJtoAfKQxAEQRAEQZDVGyhfrVbr9TpQHoIgCIIgCII49QLKW5ZVq9WA8hAEQRAEQRDEqRdQfnV1dQug/P8Fg8FgMBgMBoNtlHULyluWhQQbCIIgCIIgCBLVC1F5ss4rUB6CIAiCIAiCOPUCyqOCDQRBEARBEAQp6gWU5/8BlIcgCIIgCIKgQtECygPlIQiCIAiCoB4VUB4oD0EQBEEQBPWkgPJAeQiCIAiCIKgnBZQHykMQBEEQBEE9KaA8UB6CIAiCIAjqSQHlgfIQBEEQBEFQTwooD5SHIAiCIAiCelJA+S5F+cLEaC4ubkxNZvpGF1OaPdN9I45Ck4uDI8KWvpF0XzSvXiU1mdFuLxTzIc2F8qGRzMSstrX50Eh6cLLQ0j2mJjP6Q2YXBzVXd242NLWWjs2HRtJ9pLVTub5ovjC7OKg0Xu2ZeNTtBlOTGbnD/T0CCIIgCIKgNQgov7Eov89s8s5TOQXctSDLbxR2iEc9qTcfGtHvox82TOX6RuQBRsEHyGouYTiVc0I9+LaL8lM5uzHcaISgvOZ+1avkQ+bWeomOtdY2AukWxUPBQDDs1RXZsf5gIBgMBAfGZlq8xExsVzAYDAaD/THe/Q6FyNbwIWH/5HAwOJwQz5AIB4PanYWjgsFgMJTUXNd4VHa8n+wwMD7jvlHXGP5a2o2aftBeiJp818KBzi2kIgNk/12RrLTn9L6BQCAoamAs7f9hZcd2BgOBYGBnbNrX9naVCNPm7ea6Kx3bEVCuot1YTA5pNkIQBG0ZAeU3HOXr9aYqDcpTFqdRZK0GJwuaqPyUFY9Ke9r86hCt+znZ1eWTa/acXRyk5/fNu84hVkEfni9MjGYmZt2u3laQm5yWa4Y6XJmV3mnk4pqxitOfHoBOz9b2MGD9lBxT2M6P/KD8dGQgEBwYS8R2BINDJuI0tGqYEnxymCPdVGSAfk6EHcS34VuE2ux4KGZ4pWPv0E8PORRigOsMCQ6F9IR9KETB+lDIwX3tRkczsV3kVDOxXUHuWvT8unEIEWV9DuUTMQ7rk8Me4w37p4kwvWgirKd/wr6EcSkHt0Lz/OF+trchRueBYCAQ3LGP9uEQ+Ux+ShHfuFE5HIIgaCsJKL9mlP/7g4f+5GOf+JOPfeLv/mHSc+eWUN6fNFF5MR7P8asm0u9Ps4uDeh7l4/r6UYcMu7OLg/xG45k9b7a1LvJOgBlJ940upgS+z4dGcnG5haw/je80hIt2Y15Ndqw/uKMtlPd58nbi8UWrkEg6hJoI20iaHHagNjveL8eqBUKdiY27Dx6kwQD5zEey+R0cJQ85p2UIrt3oKJVIsvOkIgP0tDNZtvFQyBxcF+5auQVDOD8VCY8nnHs5lHB20w9RBOam0fQWeHf9UT6+mw4t4rudwDx5nzCUYG0eGEsbN5LBJH0Fsdv8GgSCIKhXBZRfG8o/GTvAv/V+MnbAfX+fKG+H1Q2MK2Sn6KPyoSkG7maUFyC1MDEqhvkFotXnpYgZ5D6i8hLH62hYvHcpa3+NufJiVF7bYBnlM4OjUpY8OQk3bjHNQ/CRVPPa1MLeqYv0n6mlPUfOFopWoXjx4DPA9eXtAAAgAElEQVTze2Lze2ILB+esQmppT2x+T2x+z5Gzhbn8XrqPXtORgUBQSm5h6S4E35NDdAcWX3e2UO6hJxkYi4T122fsc/bHxkL8qZxrsQbEtTv0x6ZnYjuCwYApyYThtZgxwoXSLRXlDXk43HNhAf6ixeFydryfkq4rXusvat7ISRkhiC3JjvdLOUVGlOdaKB41ExuOZKXuMlzOlgHl7dybgbE02RiOF7lEl4D9WoYeHh7aqd1OUZ47m+WEyXcnKZ3vjE3bG91GEYkw24EcSHySfdZuZIfHd7eaPgRBENQrAsqvDeX/6I8/wqP8H/3xR9z3Jyj/W6IZovI2aJIkDYcX3YPBVqHIoXw0r0bl405eOEfGYtILB/1KUorr5FeXqLxKt/GoKWjtQLaYfrNuKM8IXo3KF4XRCzewcXsQ5nR/TqmlPc/kX6P/vHjwmXmK8nP5gym2G9t+dn9s4eCc9drUwh4TzTM4Jh/6Y9NFq5AIsw87ItnCTDYeGbCx3qJs3R+bZokxM5YD3NKp+Ig72R4MDiUo4gsnFDh+YGzGiofsk9AThodCsbGQGeVZ7FmEYHeUp50fGTBlk4uHc7isT9fRSpvf4pL0QpskNdsjV96I8qYL2ZlFBpTXD1GMCTY0sD20Ozy2LxwIhOPp2A5K0tmxnbpDCOiTsDd3WhYsn943IA0JGH8HAuE4pXlj7pZzuH1OCeu1G0mP2Tk2QHkIgrakgPJrQ/nf/sAHeJT/7Q98wH3/VhJshJgx4eDByfyEGCRW0uLTfaOLEy4oH83zUXYHpqWAPfunnF6fmZg1Jeq4RuWVea6GgjzqqYzzelsXP9ggufiZiVnxXYEuV15sLWvbGlH+7P7Y/H4b2V+bWqBxd/aZhOSLVvLI/J7YwsFUfi/lfsr05jNzke+iVUiEA2LwWyBvPjSeCNvbFWQ3obwzBtCifHIoqIwT6BjAPQMnO96vz3jxg/LqUQX94VLqjma6rebJRga0gwfXMQCbA8BJSKDXHaJFeUN2TSoS5sYk5qx9SWImOkfScrINl77CRbiF6DvH4s52Oag/lBCgn2Nud5TPju3kouzkDDtj03xjtBvtM3BjBreHC0EQ1IMCyq8N5b/4pUd4lP/ilx5x379tlC8ULfdaKHz02pmxqkd5LjHGhnK52KIC66nJjMPxxsC8hNraopb2+dndaQYG4r3PLg5SLG4T5bkBj9Bytl3I3Vej8kIPdwjl5/J7Y0tJ+/P+qbN29J1l10g0P8+n3zhpOZISYTbl1OZvPjHG+ecOe0JkQET5QCjZMZS3I/dCyo1wQkPvMTAttpZgw8mOXjsFbYLDCZcEG02mjaYSDklika6l3cjpUEgfsNcnvchtk06lvV+7Jo9j4owC01RgY1K7k25Ovyna9BVvlBdmnbaP8omwlHsjlN+RM3n09WqQYwNB0BYVUH5tKH/6/JXPh+/btm3btm3b7v7CX5w+f8V9/3ZRnoSTnRAyH+GORzMTs1yVFYrv6b7RxZSI3Q7uM3omCTNTStoMj9fkiqOLKR7oi845+6J5fn9+0q2eaJUsHaWIjSnAL2XItCr58Hg0LY8ozCivtG1tKJ9a2kNR/uLBI/nX+AQbKhq2Tx6Z358i+3Nkr82x0SbYUEkB8g2MyksVbzxRntVdsVvOQa0EuK4or42v89F69lkujGOuYqmbEau/EPMEl4C9eQKrAeU90ni07WdldjTyjfJ+o/J84o0TlRcBumWUTw6x6aqJpLADi/R7bhRTdCAIgraQgPKdKEZ55mLxzMWinz1bqys/kovTSLzMr/FoWsp3ZzSspKSzdBo+pC3MZNVwp43mHLuz7BQp3dyQckOZWImjyzNfnTtyKWvjDFRcK/CYk++JxBcUI+m+0QwbVNBO8ER5p20disrP5ffGWBh+fn/KCbonp/KvsTycufxeivLmqDwLq5MPfIp80UmaZ+Qdj8Sm3XLl147ydM4r+dF0JOwdledTQexot1CMUmBfI8qbAVooRkn3mYntsrPknVIzmgMZIrM4t3aj8EScYUkiLNfN7DdDthbl3dCf60Cxrjy7qPCug4gm2KiAqyC4W668kz9DY+dKrjzNoU+EW4/K21Xq5Vg73S4iu7SRS+8pWvHdKEYJQdCWFFC+O1d7JRzvuo6Ss+doZlAsCW/eU8vBuqwVO0U+NGUxiOezycm1HHRWarQ7LOukx9DTGopXZgZHuQSeSR/37udG5B3scvWstXYn0xQjQ668thtpfo6uV70GFRYh8v2a6a12Oo2dSW+nzrNIvEuuvF2LJhQeYiVrErGh0ABfiIbtJv1TqVQTDPSHh7jqN/rtofAOJ39GrWDjnJyL9wc59OfEJcNIWSI03UWu8RIU1z9St+h7aVjdx2NhKTmDZVcka9jIfQXs5Zn4M3MblRWglJL5waBcn0cZDCjJ/RzKczlCau9JS0QJgXPnR3zAXlvBZneSbbdB2YFvB/2dNZ6clJuh3c4Jh3bz+zg3KHC8OACQKku6bQyo0A9BELRlBJTvSpQnOTOFoteiTtG8E8z22HORYq6Mqvqll1JTuUFutSnXJWaJ1PI1aiaMtI+GkgcnC84duTdVA8rmebfsVNrBDO06u16QJiovVPw0jxakabVeD1qoYONXbhVsIAiCIAi6uQSU70qUh9qRUDKyR5RaMk5g1cqrrjwEQRAEQTeTgPJAeQiCIAiCIKgnBZQHykMQBEEQBEE9KaA8UB6CIAiCIAjqSQHlgfIQBEEQBEFQTwooD5SHIAiCIAiCelKbjPKNRgMoD0EQBEEQBEFtaBNQ3g++A+UhCIIgCIIgyF1IsAHK94byIWV1J8OKqvIishOTmsWztCvj0gVf1avzC9byG11XpHJdd1YjZ20sSW718vMhP2tRuchePCs0ZaUmM4OTBXFFXlPPeCysm5rMuC1DZlzkC4IgCIKglrQ5KN9oNOq2sSB9o9GQAvZkC1B+LZqr7Aw0A0R3lzajDdf23dLcGb1W1K5Ha0BhnVKTGQX+tCDLb+Q/FyZGvah3dnHQQMbaYUNqMqNdPpYskWuW5hKmU7ET6scY7aI8h9rOI6Aor7lf5SrCmritii6d2+pQx4eyY/3BQDAYCAYD/bFpqQ9D9o+CYaPXzcR2BNluwR2RbKGYHLL/OZTw14xEOEgslOTbNt4fDAaDwf5YSrziruDA+Iz4dCID9AzSzsJRwWAwuCuSVa8rbCxqzyxc8VAoqG5U7ih8SNiYHNbco/As6P0q7aFt0NwaO0RqiX2tYHDY5yOAIAi6ibQJKF+r1crlsmVZlmVVKpVareaecgOU1+uxx58YvPOjg3d+9LHHn3Df89q+W5q7TX9x1Z3vrqT9NyNZ8zpzaTc/ipA4O+3Cr4oKE6OZiSkaRdYqNGVpovKzlB3VIYSf4LFNnGQkIJ1ct+dUjp7fP++yQ4pWQR+ez4dGcvH/n733f41ku++8e/+E+mHYoB9s48sSEMqExKB0OlfcvWuMQ57A401fbDFSUpvOiuwPXiwwu+MosbS66SZTBMdslgzPCFoLs6SzTvF01sReg2nEgNlWE9SixY4icHMfZklhlB9MesB3ukbf5vnhfPucb1XV0oykvvNuXpjW0amqU9Ua39f59LtOmaeW/z1DHmy3ZBh2pdyYgK0edhxzFXk9BwUmS5NN4SZlp15xmbcwcq96ZvSMq9bEwEs3mmcbdqN5YrHbIX/fqVeU/nL5tsw1Z5DxEt+kv14WdtuN5rltx0s+5W3VuECrzmQ8Dl8XHYJA/5U6rjwv+1iuMfTXy975yXbIr8N2qB2uU6955xgAAABuQuXTNH3x4sXHH3/84sWL8XjMhP78/NwoxkPls/jgK/eWwtpOb/9vOz9a+je/98FX7mV0nkDle42L0t3iKj9eLOXuWVXlR6lR3+1s7b0Bq7Or8kY9Xvmrq9JfjPbAPQmhdf1d56zDKqK3B1qjb8/5JzvRJcpLv8gMDPV7NjkxRyiup/87jWSUymL8m87V7NSjNWbzVIhbcTUsqPKqNj9b7yej/lrZX8W36LRieWU69YqtzskoXtK0WHq5HGqUba7mZCCME0OppbJrEO8fpdshe68d3evl2vj1/XejeZeab9ddjWFGFT/eVupPZyP99XrRMgQAALyV3JjKv3jxIk3T8Xgs39vl+YuLi7OzM6i8yV/9zfe/8Ou/QVu+8Ou/8Vd/831ff6/K9xoXPHtTOmtpP15s7vMNyY8irnNv3GuctFi5PT+641V5ZrpU7GQBmDcmG6usDCws0OO4ejrFWZXf29iV4u5XeU1Sh6FR5qdG686l6AnyIlV5w+MdNqyfu5nav2JWXq/KOwdsqvyedRvAMFweNMm8xfn9APsCJDdU86T99H77mP/YOVp5/Iw1rkQHK9FRPEqT/eH9x88y9rBTj5rcxaWC99fqcZOqPJF1VsU3wjOitF+rhpU1JdakYN+q5adupPJqbq0ptaXynhwOQRNuLtn99bLdaGyoHYjPB/R4jzZJoOg71LvJ3cZLMm/jzP90o/mgtsTDPGJv+ncX9CLwSyRSQ4jWAACAhxtQeabvrBh/cnIifxyPx6enpzQ6f3p6Oh6PofIm3/zjP/n6H3yTtnz9D775zT/+E19/n8qPF7mjq+I6rcq37nGDF43PN++etdJkFJ8x9S9WlU9a90gf6tl6PV5JqnRoHSma7YHmiznF4FSm5IVzmypPcuHEjPXQC5F+K5SSefNrRlW+2TCK9MnGqv++WyHZevzmjam8NHi7Kq+n6tXEJvODKPQFSOdo5eHwCf/x+NHDgxVh7U/aT7nKs/d+m9+pR00Rmp9ljtiNm920qVflmazPhrVqPao6jFzE7g21ZQYfxokI32eofKdecYRqclSesx36wuv65kKytYK3U+XdOq6lcQqqvF68d49f/ErNSTr1ShDWtlv8FPzl+dT64kLMDYp8owIAAG8dN6DyL1++ZJX409PTV69enZ+fp2n6s5/9LE1TlrpheZvT01Pm91B5k+Zf/rWRqPngK/eaf/nXvv65ARtVOCcqT4ruvDCv19dFHzUH0Cv0vcYZmwnIKcEoleppR2vM2LpzxRhSM2Zx7bBteL8di+/NNA4zVH5hKyFVdiXThnrKH614/aDp89TMqrx9n6tnQR57V777eidHm2ywLP6gOdK/K3Bl5bXRyrFdVeWfPYgOHnT4j7wS71L5ZPTsQfT00b57Pzv1qCnL6uVoZ5TutOKdkVvl7btjFc66+wQqHy9pFjuZyltbpe7NhWR36hWl/s6AjVvltfB6wYBNYZVPval6Ty5fjs1Vg88+EAAAvLXcgMqfnJywe17Pzs5Yy/n5+dnZGRP38XjMboqVwRuovINf+dVfq//pt//hn8b/8E/j+p9++1d+9dcyOmeqvFjixlT5/ZM5Xnr3diYqP15UBm86vUvluXMTt/Mv0iJwmDGr8XvXnLHvWHWrPAnGCOM0F1u0TbTZIB7vTfzrqu1c1FLuX5ydw3qNc28PxLW6nMrTCQ8duWzXs/tWVV67wq9L5feH96Ws7w8ftJ/5qvKsYK9yODpM5UUYprLW7Tdb/cSj8rPexV7iaigyOXTFm8Iqvx16wuWFVV7G0NWCNkFlvesM2LAjBvI1X+/TNWSCctRxBmz4AAK6f/dI8gM2ns9dfDXhG7Z9rCXPhyLy/QAAACg3U5Vnys6q8rRd2jwN0EPlHfyo//Q3v/Rbd+7cuXPnzm9+6bd+1H+a0dlW+fFm4zmvu/PkjFPliYJT9k/mpMEXCNj0GifqP8BmVl7qclZNeiT6S4+kC6GwsrFSzGRjddAkq6wIfe/NNIaGdkvdV6LJAjNWbEYzUXbExjAhQp+QfS5sJaS/dtOte8ZiHc5cxMZb4NcTMhNjbC5vTiCn7Fd5s/GKKt85ErJ+/Ojx8Ik/YJOM0vjxgS9jI1Rerj7Jw+6TqLy81dVazaaYypt1ZWqupsVmqrwrUkJN2lW5t9Ip4qTIFMKYTvBT8yZYMm57dd9i67gU2lA9N8vSrzJs5BI3AAAACDd22ytVebbM/OnpqbR8+UJVPouP/nH00T+OcruZKs/D6/GZyNI4AzbPN+++krn5XuOkJbPyKv5eSOU17BVs6BqO0l+HG5bviro1q8Qb/kpr/PwQ0obNSLqK0xjzCk3xDeGWJqrcXaVT9Li5L3LDndiqoxt3vqozylrWRi0HmeXH/vC9+jj0dTlX9+R14BchV+Xl2F5XVX5/eD86WBGwyM0kVfnamsiZ0AhNlsoTQU9G/bUyudVVW81G/BjG0vIdKt+q0SSJES+RVWqBV+X95koXo9T7uFappwNTK+roxqwW23FiTj+02ExmpZyoeTeaD7KXsOyvl+VR+uuhtQA/svIAAODgxqryaZqyBSgvLi5Y5EYW49lv5Y9Q+atAHxGlUDetshz83N1XJSblov9inJAVbJjoP9+8d8H3pm6N1X50MV4s2Y+Ioku+zBj1dSXHqkjMPL6Z+RwlRmdrb2Z1Tz7BNKenWy4dqRURkd/b2JUSr6XJw3aqqbO1RruaHqh4DNutZ/FKYdXsm4SNAude5ESsDmK5ejFaMWUSESNPVt51GbOWm8z/1mV0/OihysrT217jx9Lsmc37svLqEVHVVspsWywoqR78VApqTfUoqMpal6i8yMeLWr6+ISnGl4Ja1Y7faGEYfakWGXehPipWelErtNgtTkQ3urhk9ro3+vDoypg5T5VST7zSJgn2hmoFG3IR9O8H7IdnqRVsaM5H7VmlhvJODQAA3lZuOGBzfn7OFrH5+OOPWUr+9PT07OxMyj2q8iCVmZkk76FOC1tDWczO63nINdfxDFrHo5eEczNbzX7EbJqMnMvXWEkY090dlhy2SXk+c6iO6nvGfbfmup/mcdV43FV5uhJRxmyhYDeBtoKNl+wVbAAAAIC3iZsJ2MgFKGU4Pk1Tuqg8U3ysYAPA5dGWjJwWOke+5Awnb115AAAA4G3ixlawkbe3jsfjk5MTpu/Gc15ZgB4qDwAAAAAAgM01qTx1dJqJp8+E8r2g8gAAAAAAANjcjMrL9ePl0vJQeQAAAAAAACbi+lRevpHheFqSz6jNQ+UBAAAAAACwuW6VPz8/l0vTGI+IgsoDAAAAAABQnOtW+dPTU/aIKPYkV6g8AAAAAAAAl+NaVf7i4oItKg+VBwAAAAAA4Ipcq8rLdA1Tefa0V6g8AAAAAAAAl+C6VV4uJ//y5cvcZSih8gAAAAAAAPi4vkdEyQe4vnz5sshy8p80lf8cXnjhhRdeeOGFF154XdfrtT/t9eLiwn6k69ui8gAAAAAAALxWrq8qf+kXVB4AAAAAAACba1X5SevxUHkAAAAAAAB8QOWh8gAAAAAAYCpBwAYqDwAAAAAAphKoPFQeAAAAAABMJVB5qDwAAAAAAJhKoPJQeQAAAAAAMJVA5aHyAAAAAABgKoHKQ+UBAAAAAMBUApWHygMAAAAAgKkEKv+Wq/zu4cLqYYe9bw9m5HtJezCz3FOsHm40elrLcm9meW+jfbigdRuEq65uu+YAOlt7M42hd3jtwcJW4hiGxqDJ+ycbqz3eX+xc/igP1Gz0wrb3cI4rwBmG9qG9nQEAAAAArgGo/DWp/P7JXOlViXFvfBMf9vPNu6/mGs+N9iIq7+xAN3R0TjZWDWMehg6Vt7s5OlA7F432ruT+1W+5yu8eLiz3yITBORLHFehs7UlrdwyyPciahFyFVq0UBKUgKAWVta7dob9WDqot7+Y79Uop4B3Y+1IQlIJak/RphqxR34847my97xxVwF5hTAezXg6CIAjKkfbH0I3mg8q6PvhOvcL3YHTWtgqCIJjXBiAOYbbbe9aPKPZmtuuDoft0Njo2dJxszlb8ApINt0M+uCXro2wuBqWSgfbx5RFX2VaLsdbei2ZLQakUzG5mjrMwO5uVkr3DVq1kH93ZKMZjjhMAAMAEQOWvsSr/fPPuq8L/0Xq+ee+kV3zn8VnenseLdBYxDFkx26fy0lOtqnxnVy/AU0t2qLz0ZvrGV193lvDFUCW2Q9tDWu6FbeHifEjE4Nkesir9exu7sqgvzkWfvdCS/xugv1Z2qzw1dTetmt4hruoqT/yeHKJV4++70ay9/240zwy+G80TZ90O+ftOvaIUn0u/IdDxUpj9Jxov8U3662UiuK2aLbvG+XJF7kbzQW1btG+H6r29CT+FVk3JdDdaYo2ueYg8X2sq4hm24+zUhp16hfXs1CvOmQZ3X/aPmnvwJDZPN6d/PJuV16by0s5LQakk/mB60Sx736qpA/kbzc0BAABMDFT+yir/54+2P/+FL37+C1/8s7/Yyu45gcr3Ghelu8VVfrxYyt2zXpXPVPn2YGZ5b6OddEauqrxRj6diXUjlFc2GXXHPRcwEcsItw3D1sElte/dwwZgS2FhVeU3ltSmE85uB14hH5bvRrF1Nz8FQ+bhajnZUO99VM5R94moQlHTt7rRidVlkWVpT53gpoOosBVfQipxynNDd0smAeL9d95TwxYWiAr0dyvfxur9Gvt1SZ7cdiu8Zuv2O2qdb5fnYiMr7hm0eMaxtqw372y05tv562VXO11ycV9kn+NDfuMr31+bYX0t/bU4V5puLQalUWevJMdea3kbWwr+CeF1fFAAAwNsHVP5qKv9h9K2AvD6MvpXR2avyvcYFz96Uzlrajxeb+3xD8qOI69wb9xonLVZuz4/ueFVelrEbg5nVw057MEOV11mVXz3smIKr1doXtob5Km8fyLBzMTai+8nG6mBja2+mMWw2er4wjArQG4NvDI19drb2tORMpsrrZXjruwLF8aOHTx/t8x/jxwcPOvzNSnSw8nD4ZJQ+aT9ljX7cKt8Ma9XQ8G+m4HE1CErlaMfh+mZVnuxNHoIdjqg8130XUkk1qTVq0obKe3I4BFngT0ZkkpCfXdEOJMXaHblxobm4PRJWTQ+1rIiRk/ENW7WzLxb0DT2HU0dxqrzI3tSarHEu2iFBF/Yj2bxW1dsNlSd7o/GbmNl5aTGWjVmBrs2K6MC0njm6fO9sJH/nc5PGhwAAAFCg8ldT+Xffe5+q/LvvvZ/R2afy40Xu6Kq4TqvyrXvc4EXj8827Z600GcVnTP2LVeWT1j3Sx1OVL3Irp1L5vY3dIlV5pryGyg9DI4DuueWUCLRS6pnGkP0oD13Ys43Oes9MlW867vft2XH5+PHB/fYx/3F/eD86eNBJk/3how7/8X77OBkdP3p4kGnzLpVv1aotru9CrbimV8PaWr3C/FvvkPpVvr9WltV32ser/vyy1CuOUE2OynO2Q59e65vrURkjnaKh9zS9vFXLjbCTQr44UPYmGRMYc9hin2FsbUhPfKKADS9sVxdra5uV0ly006oJk46rrk2ovtP3sljeXDSmBNK/g9JctMNsfs47tZObi32aWu9sTEY0YwOVBwCASwOVv5rKf/add6jKf/addzI65wZsVOGcqDwpuvPCvH0Dqz4H0Cv0vcYZmwnIKcEozc/KM5wZ9K1JVF7FWjSVbzZY4TzZcCx0o1XihU8r9SeL3qibYp1VeS3AQ74E0Lzfd1+vHbCxPzI7td85WomOYv7j8aOHBysRVfZnD+SPnSNWoff8MdgqH1fDODFNXQvJ8GtbUOW70SxN3RRV+XiJBL4nVXlrq9S9ucOJPUn0bJV370r/rT0YGqC3mVDlVWTfqfIytW+1a7e9KpM2wzYkvkIq3HQmQFycqLxR1K+s9ehviXPnqHxcJVV2PhlYjOlgnI3q73zOOEEAAAATAZW/msr//le/RlX+97/6tYzOmSovlrgxVX7/ZI6X3r2dicqPF5XBm05/CZVXkOo124Tl6fNUXr/xlCO027qZ1VuVH1KZ1tev5ANzVuWFyg/DZTONQzP6zQa5HfZqKv+k/XTl8TPx/uhRR1TlWYf94X0p+vvD+5HK4ViYKr9Tr7H3zqq8vTpNrso3QzpPKBqw0e4lnSBgQ+hG8+WoQxe0CSrrXU9Shf4l8G8D1II2QTnqeAI29Er6g+/99dAd+HGHXhxnnTdstYqOfOnfNvhuBfaE3WncnH9wzvhKrsrrd51eWuV3NitG9kZbfkeM39mYaKeAwjwAAFwOqPzVVP7HP/npb9f+7Z07d+7cuXPvd373xz/5aUZnW+XHm43nvO7OkzNOlScKTtk/mZMGXyBg02ucqP/o5qq8KLrvHi5oUXih78u9sK1FXNQe1H6GoYzgy322Dxf4MjjFVT4xWuxYi68q75gzZCw+o6u5thhlw17uhqf26R7ixwdc5feHD9rHKmAjfuuu0DswVJ79GFgrz1xW5Vs1VdZtyWK/97ZXfkHEuiscaq6OSIxf5T07lxburNybRxcXikwhnJX7/nrZXZXfDr1JehkicuC/7dXzhYN7w4yBsc7FVL5wVX4xTuyqvC7QE6t8L6qK2P1OK94xd0Uz8d7GRI/oAAAAmBCo/OtYjPKj49FHx6PcbqbK8/B6fCayNM6AzfPNu69kbr7XOGnJrLyKvxdSeQ1N5ZtbezPLextbVKZFB27YNPJu3W/KdVboPkm/8DUfqcqz+ndhlbdXufGpvL8qnyb60a19qnt2afU9typvTwlkVf5J++lKdCA4ikdp0jliGfon+8fJqGBV3nG74WWr8qQGL26N1VaRz16McqRHQcQCkXQxSt19vSrvF2i6qqPdRwV77IGpFXUKJ1joxKBTr5nrZmZkckwjzx62d0N6HRzrZjIXdwiupeAZWXlSiefPGTCz8jJDX5u8Ki9Wrzdr7azdUHajUcV72LGwGCUAAFwWqPwNPCJKoW5aZTn4ubuvSkzKRf/FOCEr2DDRf75574LvTd0aq/3oYrxY0lewsYLptELPVTvZWO0trLryMAa7hwvUg+lTmbQiPUnp5Ku8StJnPkYqTQqpPGtkE4xD15OnJsaxmCaN0IzIba+dI2n2/KbYjKy8ekRUULIK5E3HCjZaH88jooS166NUh7kAACAASURBVB5PpV92tr2KhGGMlIiIu9BBklSJXLLdbHEiuhHJrlhHdH36vJs1KmNgAvl4JhLUoY3WHbe07m73sYZtrmAjPla5GKUanmuQ+iOi9HnaoiOm4lzBZnazL9vpou8lpdTKxfXITaW6KHdYq86RPuSyaB6vTQCMnlmNJYf0AwAAmAio/DU+Iuq2wDzbUQLXbkLlz0kl2fcCj3NKE55LMRerMdd72T1cYAGVjH22xdFdd996HuekrzrvXIxSnLh7RRrXGemQ03F9jaCtYOMldwWby5P/DCkAAAAAfEKAyr+FKg/eMPHjjORMmhRaV/4y7NQrpXLUhMoDAAAAbwtQeag8+MQgwzMZN18CAAAA4JMDVB4qDwAAAAAAphKoPFQeAAAAAABMJVB5qDwAAAAAAJhKoPJQeQAAAAAAMJVA5aHyAAAAAABgKoHKQ+UBAAAAAMBUApWHygMAAAAAgKkEKg+VBwAAAAAAUwlUHioPAAAAAACmEqj8dan85/DCCy+88MILL7zwwuu6XrdL5S8uLqZa5QEAAAAAAHitTE9V/uzsDCoPAAAAAACAYEpU/uLi4uTkBCoPAAAAAACAYBpU/uLi4vT0NE1TqDwAAAAAAACCKVH5ly9fvnjxAioPAAAAAACAYBpU/tWrV2maQuUBAAAAAAAgTInKj8djqDwAAAAAAAAEqDxUHgAAAAAATCVTovIvXryAygMAAAAAAECYBpVnt72Ox2OoPAAAAAAAAIJpUPlXr16dnJxA5QEAAAAAACBMicqfnZ29revKD8Pl3sxyb2ErSdqDmcYw2T1cYD96Nuls7c00hp5dDZqkW9gmv2U7H6XJKG02ejPLBaBHaQ9mVg87N3+5AAAAAADeHqZE5dlToj4BKr/pf2k92wNhzHsbu6RR2HNna8+nzn6VZ7uVNj8M1c7pe2sTclDPFCLZWM2aXdxGutF8EARBEJQjehm3Q9Za29b6x0tBsNTK3zyxtgqCIAjjxHEIs93so/22v15m21TWuxln5PotH6p7Q+9gWjXXdeB06hXtxOXVCBxXr7kYlEoGtaZrt77LWGVbLcbF2i9Lq1ayd9iLZlnjXLST3SjHozUCAAAAb5QpUXlm87dT5T86HsXf+2H8vR9+dDzK7by5uXl+/srGVHlOsrFKDHv3cMGh78nGam4FXSvGS+cW75ON1Z5WoacUUPnO1l7R4v1tIV7iJhovEYvt1Cv8faumVFV4KlH5/nrIfttfLwfz9b7rEP31Mt9kOyR9utGSu7+2oeHWnXqNibjp0BJu3qavd+qVbPt3DmY79Ep8Iu2fDGO7TobUqjmmKMySF2P1fiKbp5sXab8E0s5LQakUzG6yyxJX2Xv2W34gb6O1OQAAAPCmmR6VF0J/u1S+Ozj6xV/6ZVaKnPuFu93BUXb/YipfxM57M8s9WZinaRlalffW0VXV36ndBQYgJxW7hwvL3plA1lcEN0grVp7aqgltjZeU9fbXy9SAlZezHzviV516xa3yxmRAvO/UI58ia9dNTirYj101E5j3fg9Ax2+cmu8ojsF4Zwu+s9PZDvWvL0T/kmW9Vbub/3BvWuWbi5W1HnujCvM7mxUxzv7aXFAqVdZ63kZ2Ouy3r+2LAgAAACAHqPzVVP5LH3yZBgu+9MGXs/tfqSqvh911hqHwaWXP7cHM8mBj16PyVoGfaLeq07snBur7gWF4ueB+52jl8bNkf3g/OliJDh500mSUmj+O0mSUxo8PVqKD++3hg4fDJ74L26qVgoBQa3ajWa2lspaVS6lt0zejNDFK6abKq+P6jFZ3cSnZ7shN3uaptR8nxm/76+VgKWTVejn4/npZFtSdg4mXgspSWNFr/Np3F5knHi85Jw8elefiW6qs9ZgW15rShmlShW9eMxMsusqLJA+r96v4DW+fi3ZEY1bVvFWTHdiGzNHle2ej3Ly5yOU++/MFAAAAXhPTo/K3M2DzqU9/hqr8pz79mez+TOX/mf66jMrbYRuRhBH2nGysUu8XhXa21SQqL0292RDVd3H0ZqM30xg6Ajbk6wKH6O8P70dH8SiN28MnXNYdPyaj40cPD1YeP+NbdY5WfDbfqs0y7W7VSkFQbaVJN5pl6tmNZoNgNiPTIgMhup7mqrydMzF+SzZ3SHZevdxSeU+EhqAfpRvNB7WlVsz35j2cPphWLSjX1lt9foK+8rxP5Z3pmlFGwIYXtquLtbXNWqlUa7ZqQo7jqmsTJvrcxclupUM3F4Xri+y79O9SqdbkNu+N9+xsVuRv6bGktTsb2fUXGRuoPAAAgGtjGlSeSbwQ+tul8u++9z5V+Xffez+7/4RVeb58jbj/VZg9ybTk5NSN5Iw0+AIBm7CdigkAm04MQ9lBn0iYvk7mCS6VP3708OB++1i2PGk/pY4uf3zSfroSHaxEB+K3x48eagV7i7gaBKUyvemwv1YOSkFGLLu/XqYWO4HKsyOa5Wr35o5qut7BxFOVz06x60fRTse6bdczWu24vvtorWtF9+M+iryj1LwxlKm8KpOTqraq02szAZZQp7K+GHONnot2uH9X1nq26JMZglfl+2tzpMrO9jAX7dCBORvFHvRvBgAAAIA3zTSo/Onp6fn5+e1U+e989wd37txhHn/nzp3vfPcH2f0LqjxZDlJbWEa2Z2XTMzpQlV897PAfubg7qvKsw+7hwuphc2tvpjFsNnqypYjKNxt2/ObZg+jpo33VEj/WzF7+GD8+kCEcZvC8xXNtm6EZpNmpV3iR3rOJvJ00GV0qYDMiUsur5jzN4gnY6BuGcULXkCFH96l8ZsYmQ+X949cHkz9sx87pADzTDG+oXcXNrR/J+1yV129avbzKt2pG9kalfcgMxNmo/g6RsQEAAHB9TIPKp2l6dnZ2O1U+GaU/6j/9xvqH31j/8MnfDXI7Xy0rz1RexGaMkIxYb75DndvYoXT3LSOKY6g/ayErVJJVLDtbewuNweVVfn94n6r8/vA+jc2oH2W65tmDiMu9Ub/XYOF4PfZtFel1WjW9Lk7N1ZU7d6qw7z5UKrtO8TWPruFXeeN+XIojYLOdv5U+GLOW71Vz5xl57wEoqvKFq/I0eCOr8oagT6zycVWOsBXbuzLnhM5GPaIDAAAAvGGmQeVfvHhxm1V+IoquK88hKs8iMat7C0KvSRF9GOrxdBWDWdaFvj2YWR2EJDyjv5GBex6sF35vrTpvVeV9WXkVr1fQqvzxo4c8Fv9k3/xRiPuzB/lVeRakYSX5/lq51uRFenF7Ymjd9tqN5kmSZMmIl5hW6lV5b6REX4zS6kOCPS68Kp+hy85Evus2ANdQ5WDipcAVtrGHYe3Qfym0UIr5wekqn2Rk5VV+Rgi0Jeuspr6zWZu8Ks+jPr4IkK7sRiOZdYzS5iIWowQAAHBtTIPKp2l6awM2bxim8snGKjFyUSBnBW+tTj9KE3vRGCb0ak2bXtjWGx3r1WSuND/Ky8or3E+eEhGa40cPD3gaPjqKzR9T1YHruzcrz4I0inK0Y69pQzchYRjjXlLXzaxipRfhuEaWxv/x8Q1V9V1tmFUjV5EbY6mZjKVvyEOayJDkhrQ8H1iJIH0wjqdfWavvW4mgjBK+/ogo7YNwLFbjWcFmdrMv263bTKmjS6Env12USf1aVQ5G+4pA93h9AmB8mZDVOOkimwAAAMBVmQaVZ895fbtUnqn2siskM5I3rboXpsxYyp07txR6uskyTeH7VJ7chpv1QFlVnncrvljBZrJrkrGCDQAAAADA28g0qPxtXsEGXJL94X3/DawunmWtKw8AAAAA8DYyDSpPf4DKAwAAAAAAkIxSqDxUHgAAAAAATClQeag8AAAAAACYSqDyUHkAAAAAADCVQOWh8gAAAAAAYCqBykPlAQAAAADAVAKV/6SrvONRrE4aw2SUNhuFuhmLx/vIesjUTbF7uGCsx98euBfvf110o1n21Cpvn7iqOsRV7clWQSkISp7Hvspn2QIAAADgbQUq/0lXeQe7hwvFPNv/GFd9b1yF854Rm8slrNr5tCzb18kZGQ+3ajZe/5SjGVo6bjErHwGrqXya8IfXVta63NdLYexWfAc186zlI121+UB/vWw/1JY951V/8qt7cx3xdFj1UFt6CLM9Nfq4fsu3df1KPL+Wjkc+ntY7SNdg5KkZF4GwHXquW+bDegEAAIBrBCo/tSr/9//nOP7eD//y//3bv/8/xxNt2Gx4ntU6Sa29aP3+tdLZGmzs6ifiUPZkYzWjXT8R+VTd7MfTXoWsqnx/rWz7fX+tLPq3arr0E4pU5bvRPDPRbjRPLHY75O879YpSVa62VFLjJf7beCkIltzHipf4Jv31MunTqnn60w1dvq4P1bhc8hDyFIwBuDe0B6MmLTnTCary2yG/ONthEAS17df7dwIAAABcBqj8dKr8w+3/9qlPf+Zff/CV/+v//tef+vRnHm7/t6LbtgcuzRW/0oviVlVe1d2bDWG9zqp8e/D6VX73cGF5T6p8Z2vPWcLvbA022s6qfLKxqjZvNnph2/waodC3EJMyWcBG13f6nu0ni8qaXirutGJ5fTr1Ci8/d6N5paHxkqakUovZyPty8+3QrfLmZEC83657S90UYuRyAL45Q5q0aqqC3o3my1HHGIB2auQo9mDIrrQ9ZJzdKN5uFRsnAAAAcH1A5adQ5Xv/+8f//Od+7j//P032439+1PznP/dzvf/94wLbDsPc2rOsza8eNrf2FrYSWYCnW70JlVfpF27tfLRG+XxhK0lGw3B5L2yw2wCUoCe7h+FW4gnYmCq/sGpOBjwq/+xBdBSP0iftpyvRwcrD4ZNRGj9++mg/41zMcntm/J2ofDea5e4uEzUiM6N+lSYjsyqvMjm+IUl5pUJslNINlZeXxS+7motLk3ZHbvI25weqOSI0jmHwoeoZGDn+eEnuwT2YeIm39NfL4pStLwT8J25cNwAAAOCmgMpPocr/+dZ//Z3fW6Etv/N7K3++9V/zNkw2VntMzbmgX6Fw/voDNmwK0RjK+Qb79kBV32lVvj2YWR1stBM+EjmXaMieRaryaTIahqSnmp8ojh89PHjQSZP94f3oKB6l8eOD++3jZPTsQZRt84KMqrxdaM8o3k9elad06hVHqCZf5R05E+O3anOzKB4vZSbRE1Pl++vlYCmM5WTAcGW9Mx+q+rbBPX7/YByBIsdF85y48W0GAAAAcFNA5adQ5R98+7/8u3+/Slv+3b9fffDt/5K9lXR3KaxscRuZMMm3c1Gt1+SsPdDq4lfAqsqL/Vsqr929KtpVkt6r8q4Fdshu7Vtgn7SfsjJ80jlaESq/8vgZ/9XjZ/nnlR+w0YI0O/WK+wbZK1Xl4yV3nqRQVd6fX89WeXv/Jk47l78yNNrduVULpPR7Ajb+k825o9en8p16BSV5AAAAtwOo/BSq/Pd3/te/+Pmf3zv6iP249/f/37/4+Z///s7/ytiElK6N2vMwtO1c/cqZqjeduKj053FJlR8NQ5LGIRgTDGdVPuWHWz3suFRe1OBZukaovC731okUW20mjBO+1k2taaq8kPKrZeUl2yER3MkDNgmR2k69whd+EfkWR8BG31DkWMR2pDSeofK2RjsDNvqQMlfaIV9NkLK6TNpknbVGN1rKCw4BAAAA1wVUfgpVPhmlX//GH/3C3V/8w83GH242fuHuL379G3/k75xsrGpxFztGIkMsuYvQ++6CpS2XvnO0uMrrd+haU44JAjYaVuPxo4dc5e2qfLI/vF8kY2NX5dUSk2kzDErlaIe1BEGpHDV9Km9AqvK8kO+/d1MrIVPhdkRiPIETckursXPZ7hTf7AK2I2DTUhuahk0nIdqERG6es0akHIx5t64nBeQ6I/X9BgAAAHALgMpPp8ono/S//4//+R/+cOM//OHGf/8f/zOjmy3urkQ4h1S7pR8rXzfuCu1sDRZUeX7QbA+uuJjjBCo/GobLJCZk5PIvqfKOdfFlVd7KymdU5XUslWfmrdadDIJqmBewyS/Je6L2rRpdSd1YydHSZZ/KZ1gyXQvS7pMjvo7bXlWx3N6bthilPkMosqQMGUyrJlPydpJHG4+5rryc+fTXQzg9AACAGwcqP7Uqf2lel8prW135Ia9qJ41BqE8PRFZHBHuU7ntiPBNl5RUsqKM3do54nEZfwSa5RFZelt719WpcD41yIII3rudJhTF7KFW1HjeJ/mrJk4Auhe66mVU+aEk4sZGlyTjBebKVvmFOct1OxWyH2hgszNXoxbGMA6kVbHyDUe10gUt99X29g8jWi1fu+jwAAADAmwcqD5UneFV+i3szuVXU+1glfvvsG3hE1NVwV+W1eYhjzGIFG7P9daxgM0p36pVqS0RuMkLwLbaTWrPrXuay2hJZnZu/zgAAAAC4NqDyb5/Kgwk5fvTQDNLkrSsPAAAAAHANQOWh8m8OvXifyetZzhIAAAAA4G0CKg+VBwAAAAAAUwlUHioPAAAAAACmEqg8VB4AAAAAAEwlUHmoPAAAAAAAmEqg8lB5AAAAAAAwlUDlofIAAAAAAGAquWGVv7i4gMqDSdhVD6viT59tD7IfMet9JNbu4QJ5UmyzoS2ISR5taz4m1gc9CnnYFgAAAADAG+IGVL6IvkPlXxf7J3OlVyXGvfFNjOH55t1Xc43no5Q5tw57oGw+5JmsahNi22mz4X2+bM7TbaXN7x4uyJ3T99Ym9KCeKcQwzJxdgKvQqVeCIAiCYL7eJ+3xEmsNY61/qxYEtW17P91o3tku2A6NXfXXy+wAlfWuZ6tuNM+6lKNOdqNrK/100k694t2E9tEGKS5CECy1nJv018uuA2WfFwAAgNsLAjZTq/L/8Y/+08K//FcL//Jf/cc/+k/ZPZ9v3n21GBfc7fPNeye94sOIz/L2PF6ks4hhqJ4GNQyXezOkLl6AYUgNuz1w6fswzK2ga8V45dziPR2kSRGVbzaKFu/BxLRq3ERbNSKs/fUyf78dKlUVkmorO/Nyn8oLayeWvB1y090OfRvGS9y84yW1bX89ZI0Oh+ZbcYdWpyCO4rd/BpsDkEF26rVMHeeirw2jVeNHyZvbAAAAuJXcjMpfXFyci5cs0l9cXBgFe9YClXfwwVfuLYW1nd7+33Z+tPRvfu+Dr9zL6DyByvcaF6W7xVV+vFjK3bOqyo9Sw5I7W3vFCvMF7JwhzJ6mZWhV3iffpOrv1O4CA5CTivYg4+G1GV8RgCJst6heC5GVPjpKk240bxbFTUPt1GvrrRxz1Qve8bYqcsdLzpp3K1Z7U18F9DtdtUNb5bWjtGpaiZ2elIP+ehhta4Psr9fz/5nTqY49f/DU8gEAANxabkDlz87OXr58maZpmqYnJydnZ2fZkRuovMlf/c33v/Drv0FbvvDrv/FXf/N9X3+vyvcaFzx7UzpraT9ebO7zDcmPIq5zb9xrnLRYuT0/uuNVeZZ6p2V1mcDhjcnGqlG216vyethdY/dwQRxI2jOL0zR3HSbtjLYT7VbDdk8M5PcDu4cLlwruP2k/vd8+TkbPHkQHK9HBgw5vXIkOVqKjmHcjv90f3n/8LPPvJK4GQSkISkFQbaVJq8bf16NZ1l6Odm5f41rIx1wqRzv8FCprnkqz9GBDu5doVsRW+W60VO/nFqGt7IpE01839s49Xq6JtbGVsUk3mg/oFw619a41E7CjNdp3F9YR9WvlP2UAAAC3lhtQ+TRNX7x48fHHH7948WI8HjOhPz8/N4rxUHkv3/zjP/n6H3yTtnz9D775zT/+E19/n8qPF7mjq+I6rcq37nGDF43PN++etdJkFJ8x9S9WlU9a90gfWt7W6/G7hwtcpjOC5n6Vt8I2Mgkj7HkYmrMCNW2YSOXF2JKNVTEt4UdPNlZ7C1uJI2Cjvi5wnVrnaOXh8MkojR8fxaM0fnzAfky4zXOVjx8f3G8fJ/vD+9FRzH7ltfn+WpnYsChdS0VuSre7dY39tbKYfozSpBut+aVZVpEz9NSyapF4ubzKx0u5QRS9vu5Py+izgmyVp7DZiHOQVurGvmi+yQNUHgAAppAbU/kXL16kaToej+V7uzx/cXFxdnYGlTdp/uVfG4maD75yr/mXf+3rnxuwUYVzovKk6M4L83p9XfRRcwC9Qt9rnLGZgJwSjFLpxHa0xoy4OO9hFcvXiJmAMHuSacnOqRvJGWnwBQI2bP9sAjBoisHwDvpEwvB1Ok9wqfyzB6IMn4zSZHT86OGBdHSi8sePHkqVf/pon23I3li0aqUgmLXiHE1e8641b3NjN5rlfp8269GO7++2G80L7yyu8ipNflmV79QreSmU/nrZ3jMN0NOel1B5mb/3DVK/AjpQeQAA+GRxAyrP9J0V409OTuSP4/H49PSURudPT0/H4zFU3sGv/Oqv1f/02//wT+N/+Kdx/U+//Su/+msZnTNVXixxY6r8/skcL717OxOVHy8qgzed3qXyPDyj668/RE6Xg6QTANmelU3P6KCpfGMofuSDtKvyvEN7MNMYNhu9ha0hP4uiKp9srFoqL6rs7Mf48cFK5FT5Zw8iqfJM/YXcW+e1U6+UZDGeQiz5FjfKwny85rhPlPeROptMELBRC7yIV2W9K6rm+g2ybq8V5XBzb0XuPXWp+QQBG9puvFy79c03ELABAIBPFjeg8i9fvmSV+NPT01evXp2fn6dp+rOf/SxNU5a6YXmb09NT5vdQeQc/6j/9zS/91p07d+7cufObX/qtH/WfZnS2VX682XjO6+48OeNUeaLglP2TOWnwBQI2vcaJsgozK09XjymwELsesNHD9GZIRqw3rzm3vkPp7htGFMdU/2G4vLfRVitU0lUsm41e2LiCyneOSBpetvBye2ZVPo0fH7gzNiq4YvyKB+irrdvdyGP03pS8XE9G9lc664iYX2YxSpfXyjVq/MgFdpxHtDanRzGPmHPbq2+Qruuj/cp322uBewAAAADcOm5A5U9OTtg9r2dnZ6zl/Pz87OyMift4PGY3xcrgDVTey0f/OProH0e53UyV5+H1+ExkaZwBm+ebd1/J3HyvcdKSWXkVfy+k8hr2CjbkzlFl9tytXZsTmV7uzazuSb1WRXT9hlrVzm6rJc7d2dqbaQxIeMZ4IwP3LFdDJyF60N+qynuy8iReL5FVeS05w+U+IyufUZXX/bi/FjKnj6tBrcmq4CrQcgsbxfg9FWIacRElcG0xSs1HX5vK09iM9p2Atk+5iVa/dw1MnClZjNI/Pyk6SGsYFrrK64tR5k5UAAAA3DpupirPlJ1V5Wm7tHkaoIfKXwX6iCiFummV5eDn7r4qMSkX/RfjhKxgw0T/+ea9C743dWus9qOL8WLJfkSU9SBVGXmnKRrfCjbDkBi5KJCzgre9iRXdaQ+0rDwTdNLoWq8ma6V5vk9/VV7hfvLU8aOHLDDDF6hZoUV33qIyNisqWO/Pyo9EcEXWtkWduxpWSrK9fvsahcvu1CtVV4WYhGGMbIln0XQSpDGuT4bKq6PQpeLJy1F6N3MvlfWu1ugteItHRNEO8jFYKvOjr2CjupEbBhx5G2v1fVciyLf6PgAAgNvPjd32SlWeLTN/enoqLV++UJUHaTKy16nUEBV698KUGSl85txK6Em7mFSYdXoNchtu1gNlSXnerfhiBZuJrknmCjZTz049KvgkYAAAAOAt5saq8mmasgUoLy4uWORGFuPZb+WPUHnwFtA58kRlPOSvKz+dtGp5N7wCAAAAQHLDAZvz83O2iM3HH3/MUvKnp6dnZ2dS7lGVB+BtwpGbBwAAAICPmwnYyAUoZTg+TVO6qDxTfKxgAwAAAAAAgI8bW8FG3t46Ho9PTk6YvhvPeWUBeqg8AAAAAAAANtek8tTRaSaePhPK94LKAwAAAAAAYHMzKi/Xj5dLy0PlAQAAAAAAmIjrU3n5RobjaUk+ozYPlQcAAAAAAMDmulX+/PxcLk1jPCIKKg8AAAAAAEBxrlvlT09P2SOi2JNcofIAAAAAAABcjmtV+YuLC7aoPFQeAAAAAACAK3KtKi/TNUzl2dNe3xaV/xxeeOGFF1544YUXXnhd1+tNqLxcTv7ly5e5y1B+olQeAAAAAACA18r1PSJKPsD15cuXRZaTh8oDAAAAAACQwbU+7fXi4sJ+pCtUHgAAAAAAgEtwrSp/uRdUHgAAAAAAAJvrrspPVI+HygMAAAAAAOADKg+VBwAAAAAAUwkCNlB5AAAAAAAwlUDlofIAAAAAAGAqgcpD5QEAAAAAwFQClYfKAwAAAACAqQQqD5UHAAAAAABTCVT+rVb5Ybi8t7GbbKz2ZpYN9jZ202SUdrb2rF/1FrYSuZNmg/d00tnam2kMs4fRbGg7zN/D7uHC8qDpPZ0iPQuhn1qysUrG2R7M0GO1B9olWj3caHgvqTovx/W0ToE3GmeRbKw6Lrvzw3LQGJoD9hC2cz+RZGPV1a09cHzu7YFvn/opeD6y/DGra9Js0AORC9gezKwedhwHpdeT9R+GjtHyD8j/78L5r6nQhQUAAAAmByp/TSq/fzJXelVi3BvfxIf9fPPuq7nGc9Ui3dT2QiWUna09w7NpS7aFez3P0c07HxDimGFIXkuzBz8ZYiaQqch7G7v6oen73cMFSxytQ+xt7KZNh/qTS9ce8NOUO6ezFKc3q/3nfQRqkI7Pyzh3dj3lhc24ws1GTxsVG0lj4DV1esTsi5Z71kLls+c2C43BgvvPSaq/YfP6dO6Sf1G93CsAHLRqpSAoBUG1ldGtv14OgiAIgsp6V9uWtS7p226HQRDG+ZuPrK2CIAhq244NzUMQ4iXWQzsiGxvdleOM5uv94puI4Zkj6dQrQTny/7NSpyAP59tVMkqbi0GpZFCb5K86rrKtFuNi7ZdkZ7PChje7Sa5hq1ayj+Js7EWzr3U8ALwZoPLXWJV/vnn3VeH/R3i+ee+kV3zn8VnenseLdBZBHeVyVXlTa1TP1cMOGdzrTgAAIABJREFUV5ascr6Gq1aqdru6t0H90lVrN1R4YSth52hWoyf8yCxV9Reh9aq84wo4jm7XfeUkyjwQLzOTc7+MT/uvmLt4T0+wMczaynEUMkMjMwrN1It9OcBnNZ4/Kufkp9nokUJ7TlXe9bnYtj0MM/6Ai/0tXe6PEDCaYY7Kb4dcwbdDotrdaJ6/j5eUowtzJWLdqdfYbzOst1Ov8E1aNdlHTQm8kt1fL3Mh3g6VK3fqFWtWQOH2T1U+Z5NWjWu3PhIu5RkqLzckB2ItnXrFPbdh7rsYq/cT2TzdvEj7JZB2XgpKJfGX04tm2ftWTSm+v9HcHIDbCFT+yir/54+2P/+FL37+C1/8s7/Yyu45gcr3Ghelu8VVfrxYyt0zqcorx2o2emH7ElX5IRHNYbh62JE9WYnXZdv2rmgKQrzX7LbZ2Asbe0yOm74Kq1BMuRU7kPmNQWYRNxePworrZlfljXq84+hE1jOM1vRO+8Pyf/XRziqBq+vjrMrrAzZjVPx8ncprYsVXHCka99c7/o8sM7g1DFcPNxq9sD0MVweh58scfjjryocN+7MYNM1/MhP+/YhJCHI1VyFP5eNt9at4KXCrs6nFVOW74lfdaN5tvcZkgL1Xmq53IBDvN3euZhpu6PhzN1GnMIqXjD50DPZR6sav+tstuSvXNwMjw7l5NX0C333jKt9fm2NTi/7anCrMNxeDUqmy1pNjrjW9jayFfwWh1fUBuF1A5a+m8h9G3wrI68PoWxmdvSrfa1zw7E3prKX9eLG5zzckP4q4zr1xr3HSYuX2/OiOFbCR9dEclc8sriv5c6g8KaMubCVE5flWTisiljYMlwcbW3szjWFna0/19FTlNZVftSLXk6q8GDwbs2uo5Lo5q/L82vbCtuvoZBNXVl5eWPmdiVmMz7gaYldZ34RMoPJ2B13lzSGJU2MTKncVXCSL1CZWNyvvXqx+v3W40Bg6Pq/2wD1bUMcVZ7d7uLA82HB918H/yfinXi5ZZ5/gLQ/VHD96+PTRfho/PliJDlYeDp+w9s7RSnSwEh3Fo/RJ++mDTuZOrAwMk29FGPsak240GwSlIJhVyhhXaQeq8uJApdAnfFKvqWebOmuovDyuW8dHpkNLye7UK7wE3qq5dmgcSN//a1D5eMnM7ehn7Tr3pBvNy3p/N5q3yv85Yxh5VV5kb2pN1jgX7ZCgC/uRbF6rutvFh75I0juiTD67GTM7Ly3GsjFjFsGOXm2lQuuZo8v3zkZ1MdfmJo0PAXDNQOWvpvLvvvc+Vfl333s/o7NP5ceL3NFVcZ1W5Vv3uMGLxuebd89aaTKKz5j6F6vKJ617tA+pjGYFbCQel1Wm6FZ5UrBXwifs01PgFDq7e7jAivGNYbbJGbMCcSBtisJnCBMlOoik5lTlbZTKizC9v8DMlTfDC6mv6+7uuV2BfzTst86YTfGAjeopPw5N5d1fC1C/113feWuE1ei7zcDTrmaA7QE75fys/FbiVfnVw6at8p5vOfJuySh4x8hNEj8+uN8+TvaHjzppsj+8Hx3cbx8no2cPoqeP9tMn7acrj58lo+NHDw+8Nt+qcRFv1UpBZa2b7tQrvIVpehgnI3ejet+NZvlMIK4GQakc7YziqvB7WpXfqVcyC8CyJq17c67K81S9R+X1zYngOuI6FF2FX7vKp9ZvXQH3zKq8GJgzhCO/f7A+cXfAhhe2q4u1tc1KaS7aadWEScdV1yZMtXnZm+xWFsubi8aUQPp3UJqLdpjNy8mAhdxc7NPUemdjMqIZG6g8uM1A5a+m8p995x2q8p99552MzrkBG1U4JypPiu68MG/X1/U5gF6h7zXO2ExATglUrV2qPL/zUhgJkWmvBh2GqmLN1/QoqPLSunxZBaqeVNEyMiqurHxK4zqXuwWWqry3Ku+6SuFWjsp7LoJzBRu/vhu1besCyp7sE/fncPxzkvaAX0/5ybKytFR5z9cCTpXnH9PqYKNdrEBun1eBuQe5qlpK3jG1sAM24isU4w9G/yfjPVMXt17lO0es7i5anj2IDh5wpxcqz+r0nSNVsDc+mjBgBs90fLbeJ+bN6uu1pqbjqpH5vWoMYzUxGPXXyszptar8rKd+zD8RkfOeWOVHaWJE7SlelZcRdvcc4FpVXo3Huvc3R+VTXznfXa3Xk+jEpM2wDYmvkAo3nQlQF1ftRlG/staj0k+cO0fl4yqpsvPJwGJMB+NslNdEzRmu+A8NgDcFVP5qKv/7X/0aVfnf/+rXMjpnqrxY4sZU+f2TOV5693YmKj9eVAZvOr1UeW7Y0nKokpI6vRRovQgq651KhnxZebfKa/6dG/LWVN5fPndV5dmPnhBIMSasyhNxlMq77KnK86udsR5oT4u4UInkBu9eUIVmWvSa/TBc7olIVaGvJmZWDzcaewurROXZgLeUym94YuuGytu2bSNmIK7zkjfOeu5bNdLz9NYLb0ne+cGJi6b9wZj/ZLxn6uK2q7wououW/eF9ZvadoxWp8qxFyL21k/5aWYvNzNb7ZgG+HO3YVXni6DRyw7opqMqHNT2HY9GNlupaznvCgE1KbFssO8Mq7v6AjSNpI15LrTcdsHFiSXkhlTdvJ0hG8ZIvxeQNtau4Of/bcMZXclVev+v00iq/s2l+gaMtv2MmeZzr1SBjA245UPmrqfyPf/LT36792zt37ty5c+fe7/zuj3/y04zOtsqPNxvPed2dJ2ecKi+r6Tr7J3PS4AsEbHqNE+3/0SyVV8rlXzHdH/wompUnm7hUXqmtWvCkWFXeo/JZjbkUqsqz66ClgIS+L7O7in0LvPTChiGm2VX5ZKOhr/3iuiCG0dp3LWcWvx0azXdC0/8NqfJ7Cx5P9Qdssj4ONmXK+qQyIlKTV+XF1RiGy4NQbUK+ZdI++k+mysePD6jKx49FisauysuCvf3Bue5JVUZeVpplNyq/l9uyNLwukdz4w2itLL4BcJxOvKQLK1VhQ4v9Ku+JlGgWTnVfWxjHsR4l1WhHZv1NqHy6HV5S5clW/fWy/0BFVb5wVZ4Gb2RVXhfoiVW+F1XF7ao7rXjH3BXNxHsbEz2iA8DtAyr/Ohaj/Oh49NHxKLebqfI8vB6fiSyNM2DzfPPuK5mb7zVOWjIrr+LvhVTexFL59oA928gqWKrUgWa0errDWoxSVeVlh4wVbKxRkd1eqSqvjvUGq/Lmii6y/m2dBYVWmj16yk9KvweXRnqMBSvdFu49u8GCKs8PmjJL47x09NMssIINv3TtgfYdTubA2J/Qwmrmoo0TVeWzbo2g0SB+IvxTbgzJR09F/HWrvPGxZvAmegq0qnzn6H77OBmlT/btrHxGVV7IN7PzblSt95NRXC3b9uNq5Pe8iqR1GIv4DfP1/lqoB2z4lwB2lZSqZ389jDojYzFKTUy9Ku+5e1XbRPXpr5dFSr4bzbszNtpilJphvyGVtxfhKaTy2kRILu6ZjNLt0Doic26H4FoKnpGVJwn4aovsVmXleYZ+Z7M2eVVerFJv1tpZu6HsRqOK97BjYTFKcIuByt/AI6IU6qZVloOfu/uqxKRc9F+ME7KCDRP955v3Lvje1K2x2o8uxoslPWFPVV7IzShNuNAMmiP3c4jIDYXmCoOXWIzScWeh9ZinK2TlHT2L09nam2kMCqwmnmysCgGdZKESejupOGV3VZ5cbf5hEbm0cz6ZV9h3ps5vXXzjLKbyVIv1z874OByL7YiDWvufrCqvbei/FOJE9GSXeDqBa336zD9sa+fee0KM76ky/lRee0+Flqg5YDChpyvY8B89WfmE5mRIloagYvFGY6K1CwWUy9QwoVc/1ppiuRu9Nk/CMMZ6LK6bWeXzj4Tg6lka/+VyrdGuts19RNS8/uWD2M47ATCH5NhErmBD+uvWLqL8gb7cPl2BR/8t3ZXrmuiPiNLmVOpXpLrkXMFmdrMv24UoK/lW6i+f8aQiN5XqotxhrTpH+pALrnm8NgEwemY1lhzSD8BtAyp/jY+IumUIL3E+EFS7FdIyrVxR0DqoZLbrKP70zihNPCpP1NOR1XHf1FjkAaLGKfDDZSfL9zba2lqNWT2JcNNbe7Pu5jQWp3fOK1gh1lXG9qq8fquuPcWiZkyr8t7V/R3r3xtf4Li0m39AGX9L/G9Pe/Bt0ap8zi0BwtTl+PUxyz8ebaKlhkr+CF1TqSJ/e7ejKp/IFWxyumWuYONArCZJAvSexuL7BAAAYACVf3tVHgAAOPFjT3JGkL+uvE4z1DR9p15hy9rYjTd+7gAAMM1A5aHyAADw2lExGFJ9dzYCAAC4PFB5qDwAAAAAAJhKoPJQeQAAAAAAMJVA5aHyAAAAAABgKoHKQ+UBAAAAAMBUApWHygMAAAAAgKkEKg+VBwAAAAAAUwlUHioPAAAAAACmEqg8VB4AAAAAAEwlUHmoPAAAAAAAmEqg8tel8p/DCy+88MILL7zwwguv63pB5VGVBwAAAAAAtxZU5aHyAAAAAABgKpkelb+4uIDKAwAAAAAAIJgelT87O4PKAwAAAAAAIJgSlb+4uDg5OYHKAwAAAAAAIJgGlb+4uDg9PU3TFCoPAAAAAACAYEpU/uXLly9evIDKAwAAAAAAIJgGlX/16lWaplB5AAAAAAAACFOi8uPxGCoPAAAAAAAAASoPlQcAAAAAAFPJlKj8ixcvoPIAvBniajnaIS079UopqKx102SUNsOgFNSaNz9IAAAAANhMg8qz217H4/H0q/wwXN7b2E2TUZrsHi4s92YswrZjw87W3kxj6NlnsrHK9jkMXTv0byg2yeog2D1cWB7YPtdsOI64sJWQ/Tu2Mk/Nf+J5yHPXhuTfVbKxSoeX+2FdblSXpVUrBcFsvS/fG1Rb/m270WwQzNbjtbLYg6K/VlY6vlOvGLuSLc0wKIVxApUHAAAApoZpUPlXr16dnJx8UlTep7bJxqq06mRj1SXlGnI/RGfbA93Lk43VHK91/VafEqwedmxlXz3sjNJklDYbphmzls7W3sJWQs6XOHR7UHimkYs4d8+8yDVDmETQPROYNwVV+VHKFbwc7XCfLqDyYVQtB8rLrcmAi1pzFFeDoFSuzAaVtbpjCkF6agfdDgP2WmppI5kPgiAI5vUZRadeCcpRJ3dznU69EgRBEFTWu/aGWqNOf70cBEFAjihagqyDbodBEMaO/fiP5RphvMQPUtvO/MS3Q3qVMraKq6WgZLAYZ+zZ8adVCkol809oZ7NSKgWlUmWt91r+hvtrc4G9w+ZiYB/d2SjGk/mnDgAAQGNKVP7s7OzWriv/0fEo/t4P4+/98KPjUU7n3cMFIcFm+7K3Wszq1v5aMvd+pqfErfMq0O3BjHMwzL+ZxbIBtwdkANpufVV5S+VT18zBUVOfkEmr8vJqFxV0e67yRuhGs5o0V9a6stDeT7jK0zJ5HlpgJqcqLxtLwmKLVOU79Qqz4U69QkQ2XuLv++tlpctcvonKezbXadX4Jt1oXghup17htt2q+VxZKjLpHOmqbW8orJ2o/HbIB7YderzcMcL+elm+CYzZi7ktmfBsh3z/1nRC/CkuKsflHjyJzdPN6Vmvzb02lZd2XioFpZL4e9ussPfNRXUgf6O5OQAAgDymROXZU6Juocp3B0e/+Eu/zIppc79wtzs48vQ00y9ENzNq58NQlMBlEEXz7/ZgZnUQru5t7CqpbTZ6M6t7GXODAgelKi/3b+dnilflvdchN1zkhZ8729D9PYbnChSOFY38s683gV6Vt/Td8V7BJgMuBcw4hCCu6nX3Airf326pbw/Wy5Y6j9KkVdOUVFqvf3PjEMZkYKmVkqkCb3RsSLzfbe3GwAja+EfxthLfeMlRyHeNsBtvd+lIfOX8eCmMyfj7nW7O8DQX51X2CXz3jat8L5plU4teNKsK83G1FJTmoh055sXY28ha+FcQr+uLAgAA+MQzJSrPbP4WqvyXPvgy/db+Sx98OaNzZ2tP1s4zVV6Kqat43B7MiMB9Z2tvpnFIK9PK+LNtNasybVXltSH5VJ7cBjBK/SpPOww3Vvc2tgaXLHu3B/zc24cLy3sL1sxEjMG14erewnLBLwS08/LSOVp5/CzZH96PDlaig5WHwyejNBml8eODlehgJTp40Hn2QDR6IZ6tZFqG5oXeMZWfLetl+LBWZX260SwvustivPHG2DDeqVdKYeyeIRRDKqnm1ppSGyrv3lxHs3Yu2boc6+btPJBm2/JwvkiPe4fGflo1kc9xjdBzCsaXD6wG7zhx46IRPCovsjeLMWuc3eyToAv7kWy+WNPbDZUne6Pxmxaz86Dako0Zswi2z1pzJLSeObp872yUm7OWieJDAADwVjM9Ki+E/nap/Kc+/Rmq8p/69Gf8nWXhPNlY3VvwpeFXD5tUxzNoDJsNVpDe29jlWRdNXmUq3XZ6b7omtbLyrPJtzRYaw8QTsJlZHmzoKi+6DTbEqS1sJfKCqOnHJLl5NRnw3/LrUnkeEMq8k9jsn/N1wf7wfnQUM3F/OHwyOn708OBBJ01Gzx61j1W3ztGKx+Z5voVgFc4VyrlJAodX1sOYzAcslWezAubu1iFEHN+l+zk33fbXy45QTWGVl5vr6JsLUdaq407z1httlXema7J26N3KPUK9g/OUWzU2JEPlRew+X+W1gA0vbNeqi9HaXDC72W8uCpNu1VybUH2n72WxPK4aUwLp36VgdrPPbF5OEuxrVVW/ZXMDQ+udjWlCMzZQeQAAKApU/moq/+5771OVf/e9972dZYXbrIgXkEWCVWy+VF48R+XtqrwbcqDcqrx477hF9RKJeXbR6OyoWFW+PRDfdRQrt+d/OsePHh7cbx8no/RJ+ykvwEdH8ShNOkeiJK96ivee66lK47ZSawEbqyofrZXl/zINMlW+2qpVZVTGSNqI2j9bA4dF7dU3A6rS76JVkymRy6i82lzHLcpaAN1Zzs9ReX+6xtpWa3cU8vNUXkbtdeIl0c01fm/CXk+iE5M2wzYkvkIq3HQmQFycqLxR1J+LduhviXPnqHyrRqrsfDJQbdHBOBvF5mTOkPdvEwAAQDpNKn87Azbf+e4P7ty5wzz+zp073/nuD7ydhURa9WCnLNplZu7EfpX3rHvjdPHJVN4ajBh/s9ELt0w1D9uZKi83bOtnepmlbHLO3VJ5/VJnXYTsT4fy7EH09NE+/5HZPKu+y3SNtPn48cHK42eunfCauqny4u5VKytfa4qSvCixx0L9LxGSkVn5S6i8EtPkMgEbujlZZKYcdbzxFbnSi1g3RqyZw+8izQzYZKRrEp/Kd6Ml95ckmQEbUXp3HMJ42bV8V2HeE3ancfM0GXkyLQVUXr/r9NIq31+bM7I32vI7YvzOxlQ7BRTmAQCgENOg8kzihdDfLpVPRumP+k+/sf7hN9Y/fPJ3g5zOoiBtJ+NdKk9qxqSQ/3qq8pNl5TULJ1ORRETVzWVqslW+s7WnHHo36YzsZTQLMllVvtkwJjZFlpnPK97vD+8LlX/Sfnq/fcwS86T6rpft3RmbuBoEs/W+XJ2GKnXiqNbXqnQdG2PBylYtY3F6IyifMGUXIXsyJSgSsJGrtYhrTnTWVltL5c3NrZ1L7XZE3r31darCphZnpWscY2abeFeh8Y+wG83n3oKcdZPAFVS+cFWe31ChV+V1gZ5Y5Xc2ayJ232+2+uau5rQnkXkaUz2iAwAAIJtpUPnT09Pz8/Nbq/ITwVPjllBet8pnLQRpryvvU3ki/e5zsVU+2Vilp6+O5Rtws5FRsGdnkbUqjjxWZ2vPdRtx3jLz+ZV7WZWXyv7sQXTwoKNq8E/aw3iUJhlVeb4YJRP0zIANWanGTtiXVJ1eRKVZikam6vU32oo3VOWLVeVpgESspUgXo9TjJZbKuzbXoUs96tvaq9TrA1Mr6miunJmuSRwqTycb/fXQOqJ7hNT+tW8tfOM0xuBMHDEXdwiupeAZWXlSiWe1cysrLzP0i5NX5cXq9WatnbUbym40qngPOxYWowQAgIJMg8qnaXp2djb9Kq8sVtdTp1VfImCjKKDyGU+QJf6dHbBhpXQr++5S+WG4vLexNXCvyZN30TKfcqXOvdnokRy8NgEgv7LIXNS/yLry8WNedJfheFZ652GbSPzWn5XXpTwrIcNK76p+X4525Jr0bBEbuq785CrPb3vNV3nziUvKgEXchRbRSaqErLmeETIxN6SLS4ogTdaH4lgkPslL18hHVolJAk3ykIOqFWxcIyRpn4BcB+fy+UrljYyQOTb9EVFa4Vz9inxAzhVsKms92U4XfQ+UUisX1yM3c7Wq3OFibZb0USPRPV6bABg9sxoDh/QDAADIYhpU/sWLF9Ov8o4sh3upeI6V61APSTXEnels5gNi3cpe/HZbd1W+2ZBPWnUEbOip8Z58VxONM+P5uOa5m+cinmxl5WqcJ+g6esGHSYkVbHK6+VewSUb9tXKtmfv4Jx6kqTVH8Vq5wkW8218LxQ2sQusnetrrmppIVNa6l1jBBgAAAAA3xTSofJqmn5iAze1i93Bh0gczXTOXzNC/FvKyN5T94X33/aySAuvK3xTa0vXa7bac7BVsAAAAAHBjTIPKs+e8QuUBAAAAAAAgTIPK3/IVbAAAAAAAALgJpkHl6Q9QeQAAAAAAAJJRCpWHygMAAAAAgCkFKg+VBwAAAAAAUwlUHioPAAAAAACmEqg8VB4AAAAAAEwlUHmoPAAAAAAAmEqg8lB5AAAAAAAwlUDlr0vlP4cXXnjhhRdeeOGFF17X9YLKoyoPAAAAAABuLajKQ+UBAAAAAMBUApWHygMAAAAAgKkEKg+VBwAAAAAAUwlUHioPAAAAAACmEqg8VB4AAAAAAEwlUHmoPAAAAAAAmEqg8lB5AAAAAAAwlUDlofIAAAAAAGAqgcpD5QEAAAAAwFQClYfKAwAAAACAqQQqf30qn2ysDpp6Y2drb2b1sOPo2ZtZVoRbhwvLWsvMcm+mMXQfaPdwYdk8kNxt2DZ66i06zYY41uqeNQDnIQAAAAAAwLUBlb/Oqnx7YIm7pddmo9ah2TA6D0Oq16uHHerfpNF7rPZgZnlvY9do4RtuNHphO+1s7S1sJarD7uGCY/px+4mrQVAKglIYm79q1UpBUG3Rxv5aOSgFQSmorHXJtkEwW++bO9R+5WzU9rxeDoIgCILKelcbA2td0oaRbodBoA3Ys/nI2ioIgqC2rV+BJWv/9qUwt+pG84Fzb2qf9m879UreIPvr5WBevzi5WznOSw6vHJl/k71othSUdGY3+57xONjZrJRKQalUWesVar/8XyYfXo1Mj/trc4F1FGdj2lx0NAIAAHg7gMpfb8Cm2eiFbd2/dRa2EkdVvm0JOvfvYbg8aLIyPDPs9kDsJGX7IRYuVd7cPz0Qn2+0B0Llk41V3fWnVeW5shdT+VTYPFP5NBmlO/WKpubdaFaz9spa19NIdrsdck/dDomSdqN5/j5eUiIrrJ0M2L25Tqde4Zu0akpwhfJmqLwwabpbZf/WpIKNkHXur5eJTMvjqvMy4BMATeXztnKdV389FG+siQH/EOek43IPnsTm6eZF2i+BtPOgVApKc9HOKE2Ync9FO/y3XPG9jdbmAAAA3hqg8ldW+T9/tP35L3zx81/44p/9xdZr+lQcVXm9Hi/12lD5Qbi6t7GrTF16vDYTyBZxQ+W3mLjLfYo5w83/7U6OT+Xd5Kl8KyKaHlfL0Y6vURFvK5PWLFlqaKdeoUqq/NW/uY4xGaAV7v56Oa8qb2g0/ZFODPhv4+0u7cmOpR1lO/QekZ51ga2c59XviAEY1019iMS5eTV9At998yrfqvGpRaumCvPs+4TFWI55drPvbVyME7mJVtcHAADwNgCVv5rKfxh9KyCvD6Nv+XoKmfZEzNsD8it3VV6VzL0qzwzbofJyt3SGYNbj5UiIyi+s7okvCgZN9r/XqfKdo5XHz5LO0Up0sBI9fbSfJqPjRw8PVqKDlcfPkhH5UfCg49+bUnkZg6k1RR1dOLqI1oRRjsrre3a0OxsVUl51w9aNWVd55+Y6uotn6LIbsyLeXy/zYnyGlCejlKg2dW41/k69YiRn9LHlbZV1Xq5phhi/W+VF9mZ2s88aq62UBF3kVzR88+pixdnOVZ7sLVFl8lqT23llrScas2YRcVV2YBsu8q8g+HtnI/3bnjA+BAAA4BMBVP5qKv/ue+9TlX/3vfcz+w9D5uu7hwvafavDMPP202REVL4x1KvytNw+CFd7NPve2dojN8j6Ivh6ht6uyi8Lib9mld8f3o+OYva+cyRUPuX6zlX+2QPl8U8f7R8/eui3eVqV70azQpGpozdDoe+sczGVb4ZmkMbXSIiXHKGa4iovNzfPkW5+ZZUvlMzh3VzxGP/49bHlbuU/Lx6gz1d5LWDDC9uLtepmVC0F1VZ/bY6b9M5mxbUJE31W9ia7lcXyXjRrTAmkf5eCaovbvJXjEqjNxT4NrXc2sr80kbGBygMAwNsHVP5qKv/Zd96hKv/Zd97J7C9UfpQmwrMXtoZ6ot2Oxas7UF0qb1flfVxK5fkXAtev8sePHh7cbx/zH30qv/8sZo37w/sPh09YT/bGhlblSfSFODqr1gtdK1qVt4M0vkZFp14RcnwZlSebm+f4mlVeRvbdriwPJE7h2lVeXEM7yp+aSXRi0mbYhsRXSIVbq74TF1ftZlF/Mdaknzh3tsrvbFZIlZ3tobLWo4NxNpK/7VLmVAEAAMAnkxtW+YuLi+lW+d//6teoyv/+V7+W2V9T+WSUyqCLsyRPl44RPt3LU3nrnlpV+zf0XRbvc1S+s7XH5hvXm5V/9kC5e0ZVnhM/FsX4/eF9uiGFq3ytGgQlp8qzsA3/VWGVb9Xct9JmhPK70ZLPsIuovLa5XEMmCMJ4goCNWDNHq7g7AjYqAe+T8qRVIzMEd1TGpkjAhp5yVsDGum5y/L5Qu4qby8/LEV/JV3njP5rRAAAgAElEQVTtrtPLq3xcNbI32vI7ZpLHvV4NMjYAAPA2cgMqX0Tfp0blf/yTn/527d/euXPnzp07937nd3/8k59m9qcqz5x7b2NX5G2I5Tcbexu7Ih6zLPW9xyVbRWicKq8X/nWVF6vf0G6WyutfBTQb7KsD0f96VN4w8hyVf/ZARnFGzx74EvM8M1Nb06X8ilX5ZujwM2ejIF7SpdOIi/hve3Vvbv5WObFe779EVd5cA8cV6elG89ZymeIoWUf0TzOcW2WclxjGVVS+aFWeBm9UVV4X6IlVvrkob1eNm1oHWenPbdQjOgAAAN4WELB5HYtRfnQ8+uh4lN+T39vKlFpf4ZHlash9q3RBd+b0pHI/DJedWXmvyrPQjtyDrfhhWzi6XpV33KpLVD7nXl7j7CZ7sNQkVXl2dyx7n1+VjxPh5cx7rKx8UG3JZSVNlbdq7XE1sJcNcTYy5AKOqVpLUVuM0lqg3RRla3MdbdFGr2R7cKxgwzfp1CuusjedV8RLxmKRbr3meG9d9WzlPy++N9ep8YCNLbiWgmdl5VV+Zk58Y2Nk5XmGPq5OXpUXq9SbtXberiu70UjiPWnSqmExSgAAePu4GZW/uLg4Fy9ZpL+4uDAK9qxlClS+EMzjtZVq/D3F01X1JWhsiLjnB2w4na09fQxC5XkQX/W0nkhFD6QeK9ts5I2zeE9C/Jhn5Z+0n5IbW8l9rkLfVbpmlJGVVw9vqrbkE6CC2bA2q60BL7qVa1XWpxztmA9+Ipo+WbqGhGGMhdV53MVc4yXQnn/k31zHdSeo2ta3FYnc6Nl9/rJK8urpUWZQx16iXl/BRj7oSgvt5G1lnZczIyTRHxGlFc7Vr2jB3rmCTa0p24UoK/lW6q+e8aQiN4s1tcPFGu0jR6J7vD4BMFaWzGoMbOkHAADwdnADKn92dvby5cs0TdM0PTk5OTs7y47cfEJUnmVmkhFJsDhpDJVA5/V0HSgjYJMmI2XV+tici1daKi/HI/b5Jqvy+go2RclcwQYAAAAA4BPFDah8mqYvXrz4+OOPX7x4MR6PmdCfn58bxfhPmsqDy7A/vK/f3prNk/ZTeDwAAAAA3hpuTOVfvHiRpul4PJbv7fL8xcXF2dkZVB4AAAAAAACbG1B5pu+sGH9yciJ/HI/Hp6enNDp/eno6Ho+h8gAAAAAAANjcgMq/fPmSVeJPT09fvXp1fn6epunPfvazNE1Z6oblbU5PT5nfQ+UBAAAAAACwuQGVPzk5Yfe8np2dsZbz8/OzszMm7uPxmN0UK4M3UHkAAAAAAABsbqYqz5SdVeVpu7R5GqCHygMAAAAAAGBzY7e9UpVny8yfnp5Ky5cvVOUBAAAAAABwcmNV+TRN2QKUFxcXLHIji/Hst/JHqDwAAAAAAAA2NxywOT8/Z4vYfPzxxywlf3p6enZ2JuUeVXkAAAAAAACc3EzARi5AKcPxaZrSReWZ4mMFGwAAAAAAAHzc2Ao28vbW8Xh8cnLC9N14zisL0EPlAQAAAAAAsLkmlaeOTjPx9JlQvtcnROU/hxdeeOGFF1544YUXXtf1enMqL9ePl0vLf/JVHgAAAAAAgNfK9VXl5RsZjqcl+YzaPFQeAAAAAAAAm+tW+fPzc7k0jfGIKKg8AAAAAAAAxblulT89PWWPiGJPcoXKAwAAAAAAcDmuVeUvLi7YovJQeQAAAAAAAK7Itaq8TNcwlWdPe4XKAwAAAAAAcAmuW+XlcvIvX77MXYYSKg8AAAAAAICP63tElHyA68uXL4ssJw+VBwAAAAAAIINrfdrrxcWF/UhXqDwAAAAAAACX4FpV/nIvqDwAAAAAAAA2112Vn6geD5UHAAAAAADAB1QeKn876Gztzawedty/HYbLvZk8wnaajNJmY29j19xDs9Fb2Ep8h242ejON4Y1fAQAAAACACUHA5npVftP/erOfdHvAfDfDaBPm0w5LHjR3Dxfkj7r1NhsOq84+ioLu1oXYzzBcHjQzd9VscJVPdg8Xlvc2dn3noqSfkGysFh7zLaW/Vg5K5WjnDe05CEpBZa072bbNkG0YVFvXejW2w4C9luhxu9F8EARBMF/v086deiUoR9oc0tPT3CoIgqCyrq5JvMQPW9v2ja1V413CmF7h9XIQBIE5DOOMtE3YIOnRncPTTsHZmH/d5Jit4TUXg1LJoJb971QnrrKtFuNi7ZelVSvZO+xFs6xxjvyrcTbK8cy9iX9fAABwRaDyV1b5j45H8fd+GH/vhx8dj3I7b25unp+/snmzKr97uMAK3u3BTKYTd7b2uOa2B7JG3mywTZKNVVuCzc7JKE1Gw7BgkXv3cME/HlJK5yqvfN3VWf2qPbDnG3mmPgyXHeX86eFNqfxOvVIKKmutaPZSRs5s/jpVvlOvMBPt1CtEteMl/r6/XlaqyuVVk1R3T41WjW/SjeaFuG+H8o2l3YxuNM/au9E88entkL/v1CuuDYXo019xvfaofDdaYjunut+q8SO2aqasi33yxlZNzUbUHvrrZdccgFkyU2RuzJPYPN28SPslkHZeCkqlYHaTnUJcZe/Zb/mBvI3W5gAAcHuAyl9N5buDo1/8pV9mRau5X7jbHRxl978ZlTdV20tn67Bpb9I+3NhNJ1H5whRVeUaysZpbv5dkZnIcM41kY7V3ybP4JMNK8hPX49WHeN0q399uSdlS9qlZcqtmajFR+ayeZLd0MrDUSpNRv9NNM7dKO61YO4o1GUhG8ZKnou+yfDnlsOj2O2qovM92S23unGx0uv3EHga5OO6Zhubc3Hon+LjfvMo3FytrPfZGFeZ3NitinP21uaBUqqz1vI3sdNhvX9sXBQAA8NqAyl9N5b/0wZcD8vrSB1/O7l9c5ZuN3szy3sbucENIqoyykFq13sKzJbxdZMczgiV+HHZeTOV3D8PiSZWiAZtUnG9O4Vyc7EBNSKxNOlt7jgr97uHC8t6C7wRzsD4I7dRyokFO4scHDzppsj+8Hx2sRE8f7adJ5+h++9h74jzKUmuO4moQlIKgFEY8GENK9TLxUgrjhFfcWZ9atax+xdqrLRmtkTavWmbroropd9iqyXZ+oHK0plTe2bNvDVJ0E4NMutEsP2LMO4exbMy2Rlnwlm/YDuepMesqn9VTjJA6tCm47k0s5EG1o3u/Byig8v31spmB0c7Fvbd4yZX2IWOIl/gXCGpWYJyIU+VF9qbWZI1z0Y60YZpU4ZvXzASLrvJkbymN3/D2uWhHNGZVzVs12YFtyP545Htno/ontsjlftJ/ywAA8IaByl9N5T/16c9Qlf/Upz+T3Z+p/D/TXw6Vbw8WthKa4e5s7fFasgjJyBZxw6gUSvFbodeZd5R6mFTlLxGUH01Ylc/sTDCC9ewaDuXgnSrP73y91NcL1geRklnHZVL4T9pPVx4/S0bHjx4ePOikSedo5eHwySiNHx/4bZ4ZcK05SpkoM/mmRXEelelyOabOTayaKXu8xhVQq8o3Q+0QVZHHKAVBKaxVw2itHMzW+2ImkJrCbfZkal5rsqOEsTiEc+Ssnag/23lWpkjap66nWSqf2dPVSCVbhNHzVb5Tr7hCNVdRefPvYckfixffJFiImwRcWXnPsbwBG+bWtepibW2zUpqLdlo1Icdx1bUJE33u4mS30qGbi8L1RfbdMWfwx3t2Nivyt/RY0tqdjYk6F6g8AOB2ApW/msq/+977VOXffe/97P5Fq/JmqD3ZWPUXpGVncccnb7xOlb98Vb6wyusTBhM1WqHy9GpkDF7rmdmtyEVjh7bC+hOwP7zPyvCjZw8iofLRUcx/dRS7N7RUXpmxyAyURQfWmUkwE+IwTkbxWrnCtb4ViUSN5veureTMQSqUbf+6ysueZCdqkjCiPTWVN+cbuSov0+HXpfJyDxk3sLIPa8mdWnmNKi9OzY7Fy8i+B/0eg1TdzuvcSt5Rat4YaoZtSFWbxVfE36rUepZQp7K+GCdmUb+y1rNFn8wQvCrfX5sjVXa2h7lohw7M2Tii45/0vl4AALgGoPJXU/nvfPcHd+7cYf+lu3Pnzne++4Ps/hMGbGQ8w5st0brdBpWfiMkCNl7UVxb8WsnpgSyKZ82FtDlD0dp/1gehj2dCRA2epWuEyuty79gwV+VJB+f7VtwUcrxWl0LmUWf6nhzOHIlT5UkSXaR3AqL4vEJvV+UnVPl4iajn1QI24sZTfoNsZsCG7l8UuY3quLxB1jr661Z5R8amvx5mTzOMYcjcvEza6J29oXZDrFX6XHufq/L6TauXV/lWzcjeqLQPmYE4G9W/cWRsAAC3Eaj8lVew+VH/6TfWP/zG+odP/m6Q23nS216bDVZvdmg0W2wxbN9gVV7k+N/wba/O9S6p7rtUPuseWTraztaeEWefdJl5xwdx6QvC0jVM5e2q/Oj40UNfxuayVXmSa9/hO6lUyZ2jRavypLScU5X//9s7/xfJurvO1/4J9cNgmB+SYJBAMyq7Qtu2aWKUoLjCRjuYIT3r3S130B8UG4JO7CTdTqzCKcQNKjvsFFQL82BpUmypaBTcohkIdrfSNVTjtLOkiIx4n+fp5HkmqZnprrr1tfeH8+1zvt17q79X9/vwYqi+de695566A6/zuZ9zrqzpcvGYBJtJVL6xOqdF0800mHTTXmOWlBGm65Rv7+zVkCywIzthVlsu5jSmveo76qOI5F1CkoFjTgK2nzakVfnUUXmaeCOj8oagT6zy1UXZwkrVPpQ548K5UU/RAQCASwNU/nKuK89z5dU6kpqO1/bWtohYn4HKu3YxVV6t/2iZa8yqkRqTrWAT11pS07EIfbngmX7qmhc7YYK764dotwI1yThcK00SoZdReStX/mRReXeufCjqk9R5ul5N+lx5JXPEvPkcVk9NnvjOJxoGImme5MQfT+WpsIoQOF1iUtdZ01D9Ne1dNouzlt0a9mzsOEu6nekyXYzSt+NxVV4bVNBRRD2f8+5LL6qSk8k27kU2SVKKeUMaYh2TK08mxapbRZd1FlPfuJ+bPCrPRg52rJ1v15Xd2EhGHe2ofBuLUQIALiFQ+cv5ttdac2F5x1h2RgWn5SRLHmPeWZD/shwPmVa+vLemQtryxUlKN9WcWmK6ZX2XsO3LhOFrvXvD3kqUw7XlbTJtN/6wkybYGObdClgP0F5a3qvzcylxr5d2XB4vDyJj887Gq43WD7FX1y4tpgfIRsWLBzydRl/Bph2XK0+WpsnJFWAWg5yeu2KuYCOoLkp9r+SsrPd0K9hoi8nIarlFe2kdWlPMi7VnuC4G83xHVUdu1JbcmTESSOayWiEPAew5nfKtSdpcVefsTx1zhqsnl8a1S9Y6o2vleIJ8c5MacpDT0ecDrIKqTy6KbKSHkivYGElErmYnvCJKc2j1FQnYO1ewmbnfkNutaabU0aXQk29vy0z93KLrjKbH6wMA42FC3MZJF9kEAIDzAyp/OVX+mnD8qLyeP0OfCbBhTGGPVzBFmTu6nVfjPsVFrDQvVrAxt8euYAMAAACAawhUHioPLh9Pas/MRJrYdeUBAAAAcC2BykPlAQAAAADAVAKVh8oDAAAAAICpBCoPlQcAAAAAAFMJVB4qDwAAAAAAphKoPFQeAAAAAABMJVB5qDwAAAAAAJhKoPJQeaCgb2k1Ua+CikG+H8pczz5hEX3tTb0AAAAAAKmAyl9xlddfpTTBK1TPtDHx72ZqBe43v7bItehH8L+MNk3D3C+stY5TL+0kdN3W3oJ4pVS5wN5O5b4W87VWjFozfZsvP+rNsvJlruq9rblyJUe/zVgvghWvfc1mgmq4WVxhb/107eJ50ax4Q20lJ75V76BVnUxeNzuTb+i7C+b4q0lVk7L6m03VleYcP18lZ753th2pt6sar1DdLM5m51c3tSOsB94XwaoKxgtr1dtb6UYN+RpX8nra6pL2SlizJaQCPaxzo6cT7Hfc+t6q6+43eUa7bQAAcD2Byk+tyv/Lv+1X/+bv//T//PW//FvCm4PqpR350lMWWvYFns+UcoGdN1xbjh9OtAKuueHasmjq1l5QCo1r0SGV+ZU2Uwa5414rS0LpXOWJrzsqq6/CtWU9yh4flbd+qasA93UquI2VgJuxUPP5FeFkG/l5rt2VnNpeyQlZry5yq+ZOLyvzD8LLDXdfrIjPQTVk5s2Ow+rPFTe4pvMzMmWfyTfkZ2nz4tTqipjHL8qRhuGdm8VZtmWzOEukeT3gn+v5eaWqXF6ppArf9au8OkIlJwcG2vGN0YI4F29MJSdlup4vrtOWmzs2VueYiDdW5+QgxLnRoLEamNvV+KSSc40Bqkv8kqtLluuvB85hBgAAXE+g8tOp8g/X3/rghz7885/+zH/+Lz//wQ99+OH6WzGVdUFsBRcTmDdV209rjTeP7hKulVrWtRzv+CYpVZ5TaybG77We91Z2pdPUmhc10DoTnCqfl1ZqqrxkIz+v7aUi63THrL6Rirt2KPlAgNg5D9grTVcDBk3lxfBANtJQeWu0oKQ/CttRvVKVCquserM4q+S1umRGuE1J1XTfhNZvrM7Nr24ax2+szjnC3usVdUBn1L+enyfR+ihsR+FmdV02TD49cG40GrlZXDUbQFvlCrFvNuqkeVr7K7mlCqLyAAAggcpPocpv//M3v+8DH/jD/11mf/7ho/L3feAD2//8TV99qr/lgiGRMulFbKQ2yRJXCq16aY+7ixRZEX4mtspFluWW8O0ydzwmscSLw85Tqny5MEGmSsoEm6QGCMTFLpABibVLK3BF6MuF7YXlnUm6SG+Y2WCVXnWc4UH9+d3HL8L687vFXcHzKv/z2aOnUdh+8eBh60nMEdKrvC7rIpXFYflkR93aHecyv6WBdprwM5NvbOTnjUSadCovs2ty5XZ10RpIGG3gKk/C55ZqT6jymrWLYLwe55YReu+d4zi+GBV493LKtNpYz8/LwLkr/4dVyK2z3hBnXw9c1bS2sWg9VB4AACRQ+SlU+T8q/ckv/fJduuWXfvnuH5X+xFefxoaN8HO5wA2+XrINMlxbbpbbJIdbhajl9NBWwMcAfIs810Ip1GeRxs0o9TCxyh8jUT6cMCofV1lvp1aN9WGtKTrZpfJ85uvxHi+YPwRtquvHTeJp617xebUdPak9Uyr/+EXYjsL6c6HyUVh/fjfG5lOpvJ3vHjlS3rUjO1TeyoTRsHNmtPwZvZETJdjQq5hJMmZHUs0JVV4bFQhr16PjiSpvhr3bzuyaFBVi92Kp+eREiblDjgrrARN9qDwAAEig8lOo8g++8se/+uvLdMuv/vryg6/8sa++0F87tcaYlGmkfJhJ7bHzPlVlMeMz0l38PFT+2FH51CrvmEZMkQ2QfUV6IwqVyrubwWvGVkvTaWIcdexJtPuPHu7eq+2H7ahaf8E2Vh/vPqhHYVtX+fb+o4diu81xo/IM4tnZxAQbHh2fUOVD16RVet6Mmf5uq7w9d9bZG9UloblnrvJsHirfxZ1gQxs/mya7Rmc9cJi0c2NMa8W829i96ByDSi4uJwcAAK4pUPkpVPmvb/zDD3z0o43/96/sz8bzf/2Bj3706xv/4Kuv9LfW1Hw9cSKmniviVV6r2oWr/ERMlGDjR8bFeTtVX8nHGrWmNzlH/y1Sxv7jfogUs2z9vHigZD0K21H4tHVPRt81lY+qj0W03ua4ufIUV7jdH5WfKMGGx/5zi4Em4obr61gqz44c5Gas6D5FhJP5LidIsCGLzARVd4JNmxuwtmiMWkNGD41bE1KTs2uUUidttHpPTgzQnlHELH2jLl+teOO6EAAAuLZA5adQ5cN29LnPf/EHf+iHv3C/8IX7hR/8oR/+3Oe/GFPZzJWXEd+Ua5lv7S3I5BlHzjc74IVF5csla7mbCUkVlXevd0l136XycXNkaWutByYTLzNv/xBaeybjaeuervJPas9YkD5smyr/pPbMm2PDw9V6OkoQq/KVarkdlQNrtccklfds5Ad0TnuNX7UmncrTVWtcAXt2M+TnNemk/q27+Mmmvbr3jYmvu+Po8dk1rii+e6OztfzIxmzdWCknyfQxvQQAANcVqPx0qnzYjv78L//2N7+w9ptfWPvzv/zb+Jr2CjY3yWqPZALrnm4hIlderiOp+WVrjakqOdRpq7xjF1PlVZzbUvmYVSN1JlvBJq61qqYjGWlrb8G9dpBzXuyEy8wn/BD2jxuPEZXff/SQ/Jk+Ki9S3mk2C1FtW+X5cpPlwNRlXax91p4zc+srOeHZrsUoyZKX5SBraL25rKS7zeqwfNxi7yWXfWyr0DVdLFJX7UlVXl+MUq8WvyA9HWDU8zl50lj7V2lC2nqRjo3xZ2yszom2+da9acuacfNrAQDg2gOVn1qVTwfN7RZeKELFC6WQVuCWqVawCdcKOwvGsjMqzKzmv7I8+4Xl7Zt3theW5bRX9UanoERC2nrWfr20Qw+lTHfL2CXy5amLMYYv7E1EWeUXafZ8Ogk2unnXSzsLpZZYWp73UlAT5zJGVp6sm3ppR19ZyGq82mj+EOrayY/r7G2yUVF9vKvC8CS7hsyCZTYfmyvfjrxzWz2viBK2zReEcWSrGzta8dpF77fiKxLgp++xIik35suhGEYOvb7EjTtTX76GyfuCJNpCkhUjJVss/+Jbsp3UkRXEcWJC3eqw5sH92TVa0o44vnOjtoKNygiyBi3Oi82ta/3mbAxUHgAAJFD5K67yIJnjR+X1/BnyTIA59M5aqelcQl44eoo1/i9qpXmxgk1CtfgVbAAAAABwtkDlofIAOHnauufNnGEkrSsPAAAAgLNlelR+PB5D5QEAAAAAABBMj8oPh0OoPAAAAAAAAIIpUfnxeNzv96HyAAAAAAAACKZB5cfj8WAwiKIIKg8AAAAAAIBgSlS+1+t1Oh2oPAAAAAAAAIJpUPmjo6MoiqDyAAAAAAAAEKZE5bvdLlQeAAAAAAAAAlQeKg8AAAAAAKaSKVH5TqcDlQcAAAAAAIAwDSrPpr12u12oPAAAAAAAAIJpUPmjo6N+vz/tKv8jKCgoKCgoKCgoKOdVLpHKD4dDrCsPAAAAAAAAYUqi8uwtUVB5AAAAAAAABFOi8szmofIAAAAAAAAIpkflhdBD5QEAAAAAAIig8lB5AAAAAAAwpUyPyiPBBgAAAAAAAMI0qDyTeCH0UHkAAAAAAACi6VD5wWAwGo2g8gAAAAAAABCmQeWjKBoOh1B5AAAAAAAACNOg8p1OByoPAAAAAACAzjSofBRFSLABAAAAAABAZxpUnr3n9aqofLi2vB3UWsGdnbWtKGxH4dbewvJePWmXm3e2F0phzJHLhe2bd7Zv3tm+ubyzcEd85jTLrl3qpR3xbbi2vLO2xQ5iVa41b2ot5O2JP/gpUi/t3Cy0jIt19oa1PVxbtmu2AlebHcesNW+aPWnh+e3so5UL20Et9kprzZt3PHVqTX60uCaJi9ras24AibjrtLsxuWMdN6T+iwAAAADgIpgGlb9aK9gIeRIGXy/txMlTrSkkPlxbtsRRit3y3lphO6hZR3OME4iIKxvjKh+2o7DdCrhQGsq+vVAK66Wdm4U95X+65YuxgXFweuqdhWXbKVuB2CsoNK3eMHUzxsUNcw0Klvgu79W3wnJpx5LalBZrns6/CxmtudusrjoWtpdzTEJ/NcLW3oJ7fGXXd6i8ayxh3gkpBglx1Es7k48f4n6scmGCs58mlVwmm53JN05ykHKQzWQN5lc2+bcb+Xnr2+xixdOx+flsNpvNZme1JlWX2NagajQ+m82ta0fw1DT3ymaz2aWKuYWXuaInMFFdonu1o3CzOBu7y3qQNc/l2Zi4l2zkrPfHEteudmyszrEN86ubRuXGyq1sJqNzq7iR/nffLs5ksplMduZ+I9X2Y99dt3nz6D2zcX8+Y53FuTGs5BwbAQCXi2lQefrHJVT5b+23q3/z99W/+ftv7bdjqmmaqyzNkiRhwLy+IcTM3eVGZtK1plB5y9ViQv61Jj14XMxY+jr/IP1PE8FygY407IEHVVtmsZpulgv8z3KBXKAZYG6WHT0pnieIoZE4r7TnVmA5N4/0e4Pc8WrI2u+s4xJ09hslHb9e2ol9xGENBvRfUPvRk4XbfLSy5upVcUzPmOFYWOIuh44TYD2oOc5BToHN4kwqla+uxNep5DLZbCabK7ejsN1YmctqI4TN4gzxe67+tm1XctxTKznDR9nn9UCJrJB+qvLumsb1zvJdqktccBuredWSen7ev6Oh19UlbvDVJdfgoZ6fZ5Xr+Xkp086NiXvpzXaPAer5nHE0uaWen3cONpj7MsflHjyJzdPd02w/BtLOM5lsJjO/si1utsz8yjb/liu+d6O1OwDg0gGVP5nKbzaf//B//E8sdHPrB39os/k8aRc9Drq1t0DcnSmOCve6nCyoEaE3VL7ExF1aWrNsq3yapBF5IrkLl1EVIebNEAd3aagm0PpQoRUUmoE+UJEqr1XW2t8K2BVpJ6KWGR885nv5HoOkjA3z2H9CTpRrL36xqsH6Rn522pOxTRJjBrslx4/Kyz+NRwpiR//Nkzasbg0/yNBrImx3dz+ruQQ0VuaSdF9TedPdzT/b1UVXbH69omx4PRByXMkpDd0szlIlVYIbJdQkh6WDAcvaG6tzDr0m39JYflU7tfl8oLFeadAdZ/MNz8bEvfSRCb1M2ra8NZbYVEMpZ29ozs2j6RP47tmrfHWRDy2qiyowz54n5MqyzbeKG96NYmx5y4zrAwAuE1D5k6n8pz79i/TZ8qc+/YveylxitASbMgkuHiPNwFD5heUdkYrD4v0ulTfbw/90CK7P25abwTJ7AiBdyp08rTLvzWa0gkKLDVSI6xMPk/VNld9ZMPNMDJX3BY+V59VrzQX7cUfK/lf5TnHVxKGEbrIhmfmsQP0K+nMG9SRBjWdMXQ7XlptrpZ2bhZb+MESrn+Jpg3yGwI7WFAbvV3l5LnMGhctob48AACAASURBVLPP7UcBWgPcczPS3/z6b6HdwyT3zNnI6uPdB/UofNq6V9y9W3z26GkU1p/fq+17f1MjDSaoSqWeyTfk50xQFV7O1Edsp6ZuY6i8EZg3Vd4fmJddkZ9nKi8/hO2IhNIjdliq8nE1Rat0F7ec2KO87t2NHU2V13A+JVAbN4uzrswZUUGXfnkuupedNaRwdkUUelVe5N7cKm6wjberIUl0YX+q3W/nZpzbucqTo7VVmHyxwu185n5DbIwbRZRvywpsR3anyc/OjaoHFidNHwIAnCtQ+ZOp/Ac/9GGq8h/80IdjKpNEc+Y0rUCphh4f1TTakVWiJkEaUfk7QuJPoPJWso0tdttBLayXmjeV+TkEty5S0h3pEIUWrRAaKi+dz47Kmy2nbUsVlQ/b7rh1WpVPCiEbF8ui+EGh6RnVkJ5n18VmuFotJD8Qv1XEiY43CZX11c4CuevYPSZGgzxtSWRSWSqfMF1b/S7qOQO5KHf+mNY2d+KZdRYyVJBNUu10d86T2rO7j1+E7f1HD3cf1KOw/vzuw9aTdlR9vOuz+XJA81u46LBE9hmhg1KvmWovVqJws1GmdXyYKq/LuqXyPIF+zmtX64EzVSZO5eNqOjdaKu/NruH4Vb6Si8vOdwf7458AaBXUMwrrqjVYFhBtCVf8ZJXXEmx4YDu3eLu4cjubuV3duD/PTXq7OOPahYk+C3uTw8pgeWPlljEkkP6dzdyucpu/7etDtbs4pqH1zo3izjzGTAAAwLkClT+Zyn/s45+gKv+xj38iaZdwbVlM7qw1F0p7gWU5YZvaKvdXKoia/Gm58sy9Uqm8OUVVnNGR8m6kfdNRB3emBJV3pEeTZxHsdJbKk3i2K0nGFeROFZVXxEWvPdHcRJXf2lso7NEUGnHhPMqudQVrgKnjIh6vR53Fj66i9eSWkPk5KafSaoMfdTQxeYPcSKxmcoKNGVzXOko0L8VAiNcvGfKtbpg4xH8iq5P1u+Jp6x4Lw7dfPCgKlS8+r/KvnldjTqHPc01WeaNO7GFPTeU3i7PCR89R5dO4tVPlG6tzcSF5NQcgcaOngpY3706w8Vyj6Bkr/ycKzUx0YtJmsg1JXyERbi36TlxcbTeD+rmyJv3EueNVfrs4Q6Ls7Agz9xu0Mc6Nsk8WjQsEAFwuoPInU/mv/tXf3bhxg3n8jRs3vvpXfxdfn+fBL+/Q2aJiZRgiK8dV+XppZ6HUisuVp/5Kzyi307CrM2lee4DAJM8d+6R26FN5bp+Flq7ywsacUXmtEwyVTxeVN58zpAq3T1CNjW2WtSxwMXaic39J0rzWzlZgDVTkL6sF0bVu9OXHu+eDipNy93Vn6ahmWFH52Nx0IwNe3eRnqvK8ncb9Zv3WIgbPsmuEyuty7z5+dVEX6DNT+ZMk2DRWA6WqJ0ywkavBZLO59fgEGy27Rq0GQ47pVnl7vqnR50uOy3RujKtALiRmERte02qkO8fGm9Su0s3FbeNKX0lWeW3W6fFVvnzbyL3Rlt8xM3nc69UgxwaAywxU/sQr2Hyj8ezzq1/+/OqXn/xTM7Ym8929teXthUJzgWZCL++YgcP0Ki/8W0blF0qttWWyxHi6BBs9c11boyYuKi88iabK0OuVE3n9Ki/HDJ6ofII72hvN2Ly9LL1p5OqRSNJSLWlVPvLMy4zPhPFqt/ajx1yXgHS4PbyZ5MGF0T/y8vnDh9hVj8jReKLOOUblYwY5T2rPuMrbUfn2/qOH3hwbJuXaon5npPLHmvbKWA906aTCbcu3b9qrJ3RNI/dG/npSdk3kVvmE4LozYJ8UxY+rUF2KTcp3dCA/4ElUPm1UnibeqKi8LtATq3wlJ++TckWrICP9iRv1FB0AwGUDKn9e68oLu7Il1RXSdubKszmONFKuR+UdeQ6pVF68gmp5h4wfZGaFJyovlmzXlVEPkNP1bQx3t5cxca5Lk6jy1N7S5JaYQ5HIjNp6l3+hPZD4c4dywEZnIGi/XXx6D4HVt1P5vSq/tacGinHDg8RsHNEP8lapNdmk55uG2bvX/hd3tezS+L6lvXdslZe58o40JIGMylu58nFReebTLCS/WZwJqqGh6awCmQ5rqHw57w9qnspilGQpxlBFu7UlJq1l3b2LUSbNTzWcODG7JnKoPEkECjeLS455q+qY6wE/nXNj4l6i8UmNpE0iv44zlZ8n2NiCayl4XK68yp/hsXMrV57fSOXbk0flxSr1Zqydb9eV3dhI0nvCdnURi1ECcHmByl/UK6LElnJBhOqpqMVG5Z24F4bX5cZxCu0NoyKOrkWpE1VY4X1FFDVy99IioXqSQOt7cuW1q3CstmlOGLWeP8gKmseTN+b6Jxj4cuhl99LnG/xcZH5zzCtdvR2rfoXkpdPZ2QtNmoWfbsH1FCk68jJFt4vMHJXZ4nrpbJolhtzX676dPNAHF+pWdPxeLx7wdBp9BZt2TK4812sJjcRL5xar3OQWxQceiI19r9NpvSKK5pDo713i6S5a/Fu914naraumgXMmaMLaNRFNuTEWjXE1IyKvZ6KJOs6NdC0adwXeM/Z6O1m1WqWv0/QcIXI/0FdEaYFz9RUN2DtXsFmsyO1ClJV8K/VX73hSKTe5RXXA3CKtI1uie7w+ADBuobiNGVv6AQCXC6j8Rao8zbhIWIdkYpWXxkxf6VoSE1u9Xigi9GamjThmrMpP0LyUld1ReU31zGV/LHUzuo7+acTy6QQGY7V1x+nsriu1HJMs7TnBWtTcd29EWn33wMbKnKlpZ/c/qWA10zwT2FmrqZ9Ae0sreV2x1u21vYQMpYkX20nJBOvKixVszO0xK9i4OY23vQIAAAAnACp/biqvPMxaOFyg5/ieKg7FPGfSvo8zcdByGbn47r0UpLmBz+Ymn3h4+aT2zEykiV1X3qSSy2RzZag8AACACwYqf95R+euMnkXjhK2qfvFNBWeIFt0/DcqF8x9HiXc/+Rd39+6SIlsGAAAASAdUHioPAAAAAACmEqg8VB4AAAAAAEwlUHmoPAAAAAAAmEqg8lB5AAAAAAAwlUDlofIAAAAAAGAqgcpD5QEAAAAAwFQClYfKAwAAAACAqQQqD5UHAAAAAABTCVT+vFT+R1BQUFBQUFBQUFDOq0DlEZUHAAAAAACXFkTlofIAAAAAAGAqgcpD5QEAAAAAwFQClYfKAwAAAACAqQQqD5UHAAAAAABTyQWr/Hg8hsoDAAAAAABwDC5A5dPoO1QeAAAAAACAeJBgA5UHAAAAAABTycWo/Hg8Hokig/Tj8dgI2LMtUHkAAAAAAABsLkDlh8Nhr9eLoiiKon6/PxwO41NuoPIAAAAAAADYXIDKR1HU6XQODw87nU6322VCPxqNjGA8VB4AAAAAAIAYLkzlO51OFEXdbld+tsPz4/F4OBxec5UP15a3g5r4c2tv4U6z7K9fLmwvlMLYA7aCO+SAlFrzpu8rUoHhq1Yv7dwstFizk1pC6/tOF3expIt21rZoF5E/j9lRrUAcJK6FKdnaWzCOUGveXN6r+yqLTnag72W3LcUNAFLSWJnLZrK5xDtwIz+fyWa9zBU3JqxpVZtfqRRn/IctB9lMNrtYkU2qLrK9Ni+8DwEAAJw1F6DyTN9ZML7f78s/u93uYDCgqfODwaDb7V4plb/vL7RaueCXOYfYhWvL3jpK7IiIC5plKo5KCj0HTGG0UuXrW6bN6xeVJMpxRqv7va3FW3sL8WOSROWtNWWrTkHl2UFkI+1Lo+3f2lvwWb55pfowrx2F7VaQNPiZDtffJOY6V9yo5DSv3YyEZ2dngtyMLrgrgaa8i0FOM+CgKvfV9dfThqBa1g8omck3WE1m3q5DVRddKp+mpoA1VZdy1jBVmYk7GXKw7gqqMZc2m81ms9nsXJHeaesB25pb19u2lM0u6W321DT3ymazWdKMen6ebZsVXeegkmN1lqxequfns86LErvo3zZW5xzXGN+YFC10XJdog6M3Nu7PZzJZnfmV7fT/Fxort7KZTDZzy7g3qovsaLf9v/JEVHIZ+4DbxZmMdXbnRtkes50AgHPgAlS+1+uxSPxgMDg6OhqNRlEUHRwcRFHEsm5Yvs1gMGB+f9VUfjQ6sjFUnpAmKm8rHade2jFkWlbjSpcU5nceh25PNeQotEJNIlUc3X1kOeowpbYV3DFNtFzYDmrpBjP6Xn6jjTua74CJ8M6vNW9qDw1U+F/9xGlU3hwPNMuOn0McudZkvzurMAUq3xY+qgyVCasWe17hviW0XupX8r7RRj4XH7TeyM8zhy4H4lCVHLfqzeKMpfKnGJXXRjJ89KKGH7SyNcyYX9nkF0swHixUl7jdVpeIkipRruSU/grpp2LtrqnRWJ3ju6wHQosrOfnBaeridEyIq0vZ+dVN4ytLoNl2tnGzOEsUXJ7XPQDYLC6xmpvFWXki58bE61IDAM/Ahrkvc1zuwZPYPN3d+A9yWiov7TyTzWSyM/cb/H8N+8y+5SfybrR2BwCcGxeg8v1+n815HQ6HbMtoNBoOh0zcu90umxQrE28uu8r/0aP1n/rkT//UJ3/6f/6vUmLlyVVehwgccXep8o5AuK74vKaKNJ9M5Z01fTFsS+VbgTPcTmS3XtqRMfh6aeemnTmTLp0m5ZCDN0+X6VOJyts/n/ehR8oEG62RrYA/YKE/pRwvaSlV0xGVb0e2oHMPllpWKQoXP57KF2NvexXqvoCofCWnXY68RitsT1JrePx+MZgn+7pyhCpVZZwqlkzVubE6R0VW+WuYUJMclg4G5or1drReUdK5Hrik3PJjEhpvrAbFdZeU1ytV9V81P8/Pq4YErMGWZG826m3rEpwbk64rlH+mUXkRZZ/Ad89e5cu3+dCifFsF5tnzBH5r3eLDD99GdkvzRxCn9aAAAJCWi4nKM2VnUXm6Xdo8TaC/1Cr/5eIfZEn5cvEP4uunVnlPYNgdr9Wi8uWCzIShEV/3AYOSO9kjMcNH6aAu04ZwU3H0JdiICr7kEG78LgFlF+UQVqsrHDv6jNaQ3ROrvOx5dnVWGN4gJipP22Oq/M6CeUXWeMl8NkKefhznAvcfPXz26On+o4e7d4u7dx+/4Nuftu4Vd+8Wd+8+bD0RlauPdx/Uo7AdPak9u1vcvVt8Xm1HT2rP2EYf3N3NDHIupuW8lJvTV3l6rtOJypuBdi8z+YbL+N0ZOJbKs4wjeeFJ6f5SQHUTpUptqnxcTXGLas5txde9qTL6iYg31/O51U1/gk3b2kV7XCAP21idc+QU2e3XN6pnF3HXNbnKi9yb+ZVttlHcYzy8LX41vntu8Za+XVd5crSIpt9wO79V3BAb40YRlZyswHZkN6H87Nyo7sbbk6YPAQBOhQub9kpVni0zPxgMpOXLctmj8h/7+Ceoyn/s45+Ir89U/j/oxROVp87XCohvWYaqJ9jQnHiXomkyJ0O5seH5pKi80mge/17eq7Po8vJeeSu0zutKsLEaIELpfCMfCRjx8uWdBW/avX+CL+tPpzFbc21PJyqvro7/rMZgiXRvQnoPH7rYUfm2luJP7h9PVF5Nxo3pKC/Vx7v3avthOwrb+48eKpV/UmtVjcpPW/eKuw/q7MOzR0+j6mNWf//Rw904m+f6y5Pjy5Uqs9XFSkSyayKa++5JLJlU5WWOSqqofGqqi/KpgkjEd9a0xwaLefe0Vzsqv7IZbeTnxZGtNHqDSs6ZKhOn8nE1nRsdKr8eOBNs9JryRCLvJVHlZSBfr2k8VaCns9PinRtTXFdKldcSbHhge/F2buV+LpPJlbeLM9ykGyu3XLtQfSefZbB84/68MSSQ/p3J5Mrc5r33g9pdHNPQeudGfqcdZyYAAOBUuLCofBRFbAHK8XjMUm5kMJ59K/+81Cr//R/5CFX57//IR+LrT5Zg49BrEU7eCmOnPzpwJZk0y9IIT6Ty+lkKe0xG7Ri5rfIqBUi0RDqu+4wy/2R5b63Aos5iwGNcQswqMbXmzeVmsJycmROepcrL/knfvY5+oLlJ2vxa+ZTDrfLm/TDRNdafs8h62I50lRdBehWS51se1Nlezx49ZbH551V2HBK8tyDh9s1qeZPk2KjsmugMovKayqvtMirvqJkca3dUDnLmFh53V9IvZV3m7tMIvSNXXqx1Q87oU7fG6pywz/NUeZndbnW7S+Ubq4GMzcervJwDkFLlxVnsxH1PNv+JVF5BnpnoyTYkfYVEuLWgPnFxpfJmUH+xook+ce54lW+s3CL/R9gRbhU3aGOcG8URyJjB9xsBAM6CC06wGY1GbBGbw8NDliU/GAyGw6GU+8self+VX/sNqvK/8mu/EV8/pcpPNJ00OY6rG60ZlbdUfsL1cyJ1KNWqcG3ZcV4rwYYMQuwM9VTnNZOIUiSFC7V1uX7aa59U7mNV3tFUK83GrOOMyouuWyiFiSp/kqT5J7VnKqOGqrzMrhE2/6T2/FGdRuV3H9SjJ7Vn3OBFnN53IpljU65UN9rK0Vc0ET/9BJtynq2EkyvHybrU+pThdke1cuDQ93CzUdYm3c6vbEYbm0Vh8KbKG1F5cfliCqxjYZwoFFkr/M8TJtjINWSy2aVKfIKNUvNQrYTD5oy6xgzkyFnXqjuhOhQxaXeCjZsUoxHZYydPsKGodHN+1znTV5JVXpt1enyVr+SM3Btt+R3RfudG9R8HOTYAXAAXk2AjF6CUyfFRFNFF5ZniT8EKNt985+V/zf2PGzdu3Lhx47O/9N+/+c7L+PrHmfZaa95c3iuXdhZKe4lLDbp3J3kUC6WwXNheKDS5CMpvTxCVp6kvNIbNtruElc7IFCe1VN59RtO/tdRzcnZvSjpNT0qjs6cZla81FwpN1s9M5cXIQT2jSDuQ8Kt8aG70qvyxr0tkyLA/tQQbDgvbP209qO2rBBu2Y5Hm1r94UEyTYyM1XYi1vuxgkso3SGaO6IcgIXZYpiovslC0uLhUeXY6f068SkIwo/JVmXav58cbKUNU0JMTbFjjZ/LVjRiVl+vJcKiYWvLtnfbqSJ5hB1cmbUbxnSvDyG8dS9Co/4n+qHw9P6/JOhXrGMkW+zqt3ZFj47+uU1H5tFF59tmMyusCPbHKVxfldNVK1XwYlTFmbng26ik6AIDz4sJWsJHTW7vdbr/fZ/puvOeVJdBfapVnfGu//a39dpqaKdeV57Cs90Ir1EKt2zSZO17+eOxZf2eTWoZyeW+N5rdMrvIsdk4TaZwJ62TC5R5Ztaa5Rivrjn48lVdXoWWNS+xnBY7VLR3XmE554+SYP7JQl2wuLqQ3OPndT4kqrz0HcA2otDeCtdYmidDHRuVZlP3Fo9q+mOS6K6e68n1lck5SVN5eWN16HVKUQuXNGbRhJRe37Lo6UZqovJ6NM2FUnrRWD8/PiVmS7PLzZE0bsq68T+W1M9oqT1Nc7Ex0mUAvuteIavtrOnahafFUuLVnArRhakUd04xj1pWfJT+9sVikW8pJFznWt3Fv9F6X3nILnmBjC66l4HG58ioSz2PnVq68zKGfPCovVq83Y+18u/nfTdtI0nvaUfk2FqME4Pw5J5Wnjk5z4uk7oXxlClT+1OGCrrsdMTmxLEkKxbQDz5rMaeuUn1auvHuu7U19EEIXmrR3PFaCjcQ1eaDW9OTfs/SkuGtPp/JxMxbKBdZs1Vrjd6F/Gj3j/h09ufLa9YqOko9N1ox5CGqGtJJ+kklvblQ8bd3jOv7iQZEG2uWfz6taZZkrr8fvE3Llo5BZOJXRSk5L/jai4PYrooSFaGnlSR4fOqPy5rcyASabCYp8rRivyrvn5s7MzVtjA4oj2Z0uyulaV57s7myMmbKiwuQ83UXLYBFvRNJngrpqmi035o+SXJrYfXnzHMF7p8rLlzqRRB3e4fwVUXrSPDuvntgTWS2kUq6tvu+eF6u61Gy2/oooLXCuvrql3972Cja3q3I7XfRdpdNQF9dTbhZvqwMu3qZ1yJ1JPV4fABgrS8ZtzNjSDwA4Hy5G5eX68XJpeah8AhPNjNRD9YY9a+kc8S+fIj6dOENULXqYai0UPWZs7zhhVN5eol5T/7VCnKzzw3qGRqlVPvlNq1ro3Xz5LukN12zddFF5bdbEpIvSTARZwebYJK1gc6H4VF4tLzNX3GhXy/miWvzRyIFxjSg4NFdeHJzm2NBFbMzkIiL37qi8NryxhwcAAACuEuen8vKDTI6nIfmY2DxUHkwD7pSeq0z1cXxuTAKJ68oDAAAAIInzVvnRaCSXpjFeEQWVBwCcK+63O3mWfAEAAAAuH+et8oPBgL0iir3JFSoPAAAAAADA8ThXlR+Px2xReag8AAAAAAAAJ+RcVV5m1zCVZ297hcoDAAAAAABwDM5b5eVy8r1eL3EZSqg8AAAAAAAAPs7vFVHyBa69Xi/NcvJQeQAAAAAAAGI417e9jsdj+5WuUHkAAAAAAACOwbmq/PEKVP4SoL+YyX6DrEbsi2MZ9dKO80VI/CVH7q9IBcdrXynipaq1ZsKboYz6ntOlejmXvq58uZDiXbxJHUXeThXTwrSUC8YRkl5P63/rlr6X1bYUNwAAAAAAToPzjspPFI+Hyp8c7fWfjLRvjd3aW4h5haotdubrS51vnHW3h4gjkUL3AdMYLZfL+lZo2rxxUUmiHGO0ejc6tLhciB+TJCpvuLYsW3UKKs9eJSsbaV8abb/2JmDrjtK+Mt+/m+LNxNfZ9Su5LCvkDbJhu7E6l81ms9m5onbDbBZns/Or2utaPTXNvbLZbHaWvyY2CtvResBPu1Txtq2en89ms1nzjOqk9ID6FeXW1ZbqUpYW+2hkR+0qxKW5TyS/1Q4o2mz0JwAAXB+g8lOr8r/1xd9Z+ImfXPiJn/ytL/5OfE0S3I3qpR0rqpqCNFF5S+kErcCQaVlNKF1CmN95HG17miHHztqWLpEqju48shp1GN1VL+2YwX52UakGM/peMUYbdzTPARPhnR+uLWsPDegdIn/iNCpvjAcWSqHj5+BHDtcK7HdnFa6lym8WZ5lxbhZnibCuB/xzPT+vlJRLv2au7poa1SW+S2N1jot7PT8vP3jdWor1ZnGWqrneVANh0qp+PV/U9vUOOapLxoCkkosdZuRYs+v5ebWXGkVUl2JHKQAAcHVBgs10qvynP/PZpSC3sf30r+vfWPpvv/zpz3w2prIuaq0gfWDegxI46u5S5e1AuKH4vKaKNJ9M5Z01PTFsS+XZ2MbyUSq7tMdawR1H5kyqdJq0Qw7ePF2mTyUqb/18/oceKRNsaCNZMN78KcV4SUupuq5R+XqlKv8jKCXV1Lm6ZEa4iXnH1SSHpYOBoBq2G+sVKeKN1TlvzFuq8HogP6dQZEP99cb4xgDrQW5dj8qv5/3PGdpRfbOhTif2ohcrBzkAAHDNgMpPocr/2V98/ZM/87N0yyd/5mf/7C++7qtPVb5cMHJUZOxZbKw1E3Nm3PFaGpXf2lsQB9QGEs4DLu+tOZM9kjN8lA7qMq0LNxVHb4INr+BLDhHG7xJQdlG2sFpd4drRY7Sm7J5Y5UXPs6uzw/AG/qi81h5T5Zet5xXmeMl6NqJGOMeS+/rzu49fhPXnd4u7d4vPHj1VX1Uf794t7t6r7Yft/UcP5edI//PFg4etJ3GnaKzMZTPZbCabnck3ygH/nAlyi1lj+/xKpTjDtxTFtznvRUmR1YxWU2pT5eNqcjSjdUm2R3m1E0lFrufns0FuKT6DxavyjdU5eczqEj0CC8DTy3ElBbkeCNhjG9YJ7oENAABcA6DyU6jyX/rd3/vcb3+Jbvncb3/pS7/7e776NPBseKqcCumbh2ol5wihtA1VS7ChOfEuB9VVVYZyY8PzCVF5cgncDoMajy4HtbC+ZZ3XlWBjNYAfim8UIwE9Xr69sOydn+qf4BuT7GTPtT2dqLy8Ov6zmoMl0r0J6T186GJH5fUUf3X/eKLy4dqy6vkUTzZ0nrbuFZ9X2ef6c6Ly+48e7t59/IJVe1J7/uhp9KT27G7xedX6M6w/v+u3+XLAdLyxMpfNzBU3hNkvVqKwXV2Usr5ZXGFWvclsPlduN8qVuCCxjFjrqTJxKh9b07XRIdlUrwl6TXGixupcdimorrepNCfsq213Z9dUl9hVmLnykSPrhuLKOLIzfAAA4JoBlZ9ClS//6deMjJpPf+az5T/9mq++0Ck7tcZI+fBO/TT1moeThR/LjfGzPB1n5JYsjfAkKq/X3FkrNc0UoLZH5UkKEG+Jclz3GWX+SVDaW2BRZ/Lcg1xCzCox4drydlBopvPXM1N51T/pu9fRD/pAUc2vlU853CofM5ZIZv/RQxlo11T+Se3Z3eLu3eIudfTqY9+f+48e7j6ou07BvNyIRldyLBIfblYXhdZv5Iuy5Rv5+Uw2m8nOr/ime7ajsF1dcmWJnLnKV3LuLBS3ymtnXw88gXmPyvuya9YDUdmh8r7rorvr4u4M5wMAwDUCKj+FKh+2ox/9sR/P//5X/v173X//Xjf/+1/50R/78ZjKSjRrTc3XE1KWJ5lO2k6O42pGa0XlTZWfdP0ccijVKpospM5rJdiQQYiVoZ7qvGYSUYqkcKG2LtdPe+0Ty32cyruaaqbZWHVcUXnZdc1yosqnGv75ePGAZtQQla8+3r37+EX4tHWvyB2dy71QeeNPXt8+RSWXybJgPNnI/H6uWK5UN1iFoLiSp45LovUelM62T5pgo5Zwyc6vbsYn2IhwuNidl7li3T1miBlIaB3iUvmY8L9RzH1jMuzNPpGB/5iHBgAAcMWByk+nyn+j8eznPvULN27cuHHjxs996he+0XgWU9nMlXdltCfBjLMV3GmuJS416N6dZPLcaZa39hbuNAMugurb40fltdQXEsNm253CSmZkypNaKu88o+nf1sRi1zwBs7W0hYnR6FOMyrfWlpsB62em8nLkIJ9RpB5I+FXe3OhV+WPPf33auudWeZld8+JBkYTtidkbfz6pzOvPFgAACnxJREFUPXPn2KhsGbpdZM8HVaH18ysVR4UZ/6ovmnRSFbbl2zft1R8Ll8JtRfFjslDoEEJ+1sYVXsN2tiRu7RqBOypv9Y+jqbxP6LjFv6QPAABcbaDy06nyjG99u/2tb7cTq9kr2Aip0t7HVC/t+bRVBIBVqFVLu4+XPx571t/ZRJahDEpafsvkKk+vSG6xEtbJhMs1bfLAHqlsOPrxVF5ehZY1rrCeFThWt3RcYzqVjx2esUcW6pLNxYWMBie/+ylR5bXnAI4BlTZBuVyaKELvjcoLNX/xoLj7oM7+jcL2/qOHzx49Nf6MwpiovC7l5YA7PUuhWazICtT1Gytz8yubLDDvyrGhKS5i+UW6xGTcLM+4mvYuWlx8PaCfXU5PF6OkyT9qtUfPKpYulU+KrOtnNNofPwbgy/IYzfOtzAMAAFceqPw0q3wK6PRTEo1Wmc2qAvcwKZpc0A23UyYnZtOmUEw78KxNfNQWNzy1XHn3XNttbRBizh8wdjxWgo3EkT3Cetu7DE7stadT+ZiUla29hTvbQY201vhdrIVlzPa4VN6VK69dL+8o+dikZMxDUJ0s0+vpV2okYPVb9TEPuqvkeBqYLzJBF5+VwdM/o7hc+XYksmXkVNcobLNoPdF6mYHDo/jZxSCXsfei7zMyc0tEuguNK5NcFBKldtU0EDvSKLtWPPs6p5AmvFtKvvFKE307u0ZfwUbuq40ZrHwbtYINee2UfhDZPITkAQDXFaj8FVf502WSmZF6qN6wZy2dI+HlU8Snk2aIqrV60mVgazFjx46TReXtJeo19S/tLSSs6E8fgNg9n0rlk9+0qoXezZfv0t5wzNZNGZWnsyaOnwqfArqCzbGJXcEGAAAAuNxA5aHy4OrgSem5wjxt3XPnxqQkcV15AAAA4DIDlYfKAwAAAACAqQQqD5UHAAAAAABTydVSeYPecBwNRt3BqNMfHfZGB73hm2j4Khq2u4PvdQbf7QxeHg5eHg7eP+y/d9B/76D/nYP+dw76337D2Rf2L3kXAAAAAACAS8Y7JFT9jhakjqTQv/u6t/+m/52D/nsH/ZeHg+92Bq+i4eto+KY3PCAMR+NzUfn+8FV38N5BL2x7VZ4F6aPBqNtXNv+a2LwU+vctoadOr5k9AAAAAAAAFwWJMtuxZkPoZbSeq/zrnhGV5zZPYCoftrvvHfRenZHK94ejTn/4qjt4/6D3tlB59lCAenx/yAPz0ubZaONNNHwdDV91VXjeFnrq9D65BwAAAAAA4AKhfm8LvW3z337T/85B//3D/svDQbvLbZ4JPWMwGr/19pu32933z0Tlj46GY67yr6PBy8P+u68iqfI2PRmYZ2k2JNNGhucNoZdOT7U+xu8BAAAAAAC4KEyzl0KvbD7yBea/1+FCL2Eq/+6r6OVh/3V0Bio/Go/7w3F3MHoTDb7b6e+/jt56+81ofNRzqbwWmB+MOiTT5k2PDz5YeJ6m3EinF1pP6QMAAAAAAHAh2IFmOz9cCj0Lz5s2r2fMGzCV338dfbfTf3NGKj8YjaPB6KA3bHcG7x303nr7zWg87g1HveG454jK88C8bfMyPM8i9IbTf8+6Nun3AAAAAAAAXCBGrNnQeib0Mjxv2LxMs3nfOmx/OH7r7TfvHfTancFBb3hWKt8bqBybr71z8GYw6g9H0WDUG0qUx1OVZ0nzLNmG27wl9NLpqdYDAAAAAABwUdgRdFcuiRJ6GZ4nsfne22Jtym+L2Dyl3R286o++9s4By67p9E9b5Y/IzNcuC8x3B//4slN/v3M4HI3G44kYjsfDkRt7PRwAAAAAAAAuLZ5Zozyu3Rvw0HZvoAW+af3X/dH/fa/zjy87bMn57mB0JipPA/NvomG7099+2fnqO2/eehsAAAAAAABwHL76zpvtl512p/8mGnb6w97ZqfxwNO4Px5G0+e7g5WH/vYPe/uvo3VfRu6+it9vdf/8eAAAAAAAAwEHY7r7d7r77Ktp/Hb130HvvoPfysN/uDpjHR4NRfzg+A5UngXmWH9/pDw96w9fRoN0ZfLfTf3nYf3nYf/+g9503AAAAAAAAAAfvHfTeP+i9POx/t9NvdwbtzuB1NDjoSY8fDUZnoPJHXOWPhtzmxz2+NA1bkWbwOhq8jgavuuYymQAAAAAAAADGq+7gVXfwOhq8iQZsMZhOf9gdjHqDEXv16nB8RiovbJ5l2rDwfE8tNzlkHPYAAAAAAAAALoQzd8mMWBaMH47YIjEnN3mXykubZ5k2UujF1N0RowcAAAAAAADwILRZLYMjJH7MTPusVF45/Xg8Go2Gw+FwOOyJMhiY76Zi33a73W632+v1+v1+r9frdDqdTieKosFgMD6VxqJcpoJ7A8VXcG+g+AruDRRfwb2B4iu4N+KLV+VHo9FgMOj3+1EUsX6Jooh9jqJoNNJWzxmPx4PBIIqiTqfDKrCO6/f7w+HwqvbdtS24N1B8BfcGiq/g3kDxFdwbKL6CeyNNsRejHA+Hw8FgwEY2HVJYJ7IPsvtk14xGo36/T7tvNBpd4Y67hgX3Boqv4N5A8RXcGyi+gnsDxVdwb0xUNJVnzy9kN8m+6Pf7/X6/K4pzJHR0dDQcDuVQiXYxq3Dlu/JqF9wbKL6CewPFV3BvoPgK7g0UX8G9MWlRKs+eYvR6vcPDQ/pIgg1o5MUbn+mH8Xgss5S63W6v1zN6GWVKC+4NFF/BvYHiK7g3UHwF9waKr+DeOEbhKs+eZbD5AezK7bwi2UfGFvqBPddgB+l0Ov1+/0oOgK5Vwb2B4iu4N1B8BfcGiq/g3kDxFdwbxytc5eXziG63m2ZygJxKbCQhjcdj2YNsagKdMny1u/IqFfpL4d5AoQX3Boqv4N5A8RXcGyi+gnvj5CVzJK6Z5RX1ej362MJZ5LCJ1R8Oh/SrwWAg05uu9uo/16Hg3kDxFdwbKL6CewPFV3BvoPgK7o1jl8xYrN3zIygoKCgoKCgoKCgo51VOR+XlEvq9Xs/42hgV0ccTcuVONniie8lxUr/fv/KzDa5eob8y7g0UWnBvoPgK7g0UX8G9geIruDdOpWSOjo7ocvr0O/vpBv2TTRCWz0FoNZq95DsUylQU3BsovoJ7A8VXcG+g+AruDRRfwb1x7JI5Ojpi6URsZgD9LuaCR6ORfI2WfHcuHSfZ/X4lu+8KFJZt5ptfgnvjOhfcGyi+gnsDxVdwb6D4Cu6NMyqayne73TT70JdppVmw86r23RUoYzFTotfrOSeF4N64tgX3Boqv4N5A8RXcGyi+gnvj7Erm6OhIJifFdB8d5bDVghInBccMjFAuSWGZZOxFDM6FV3FvXNuCewPFV3BvoPgK7g0UX8G9cXaFT3uVmUbGc40j/dEG7btut3u1F/e5DuXw8JCNgNkHNqil9z3ujWtbcG+g+AruDRRfwb2B4iu4N86uZI6OjthCnqwH2eDGWGyfFfY2Xdl3V35G8HUo9OXG7P8D2y5/fdwb17bg3kDxFdwbKL6CewPFV3BvnF3JHInXa7FHG6xfjCHOeDwejUbsZ0DfXaUyGo3k/xz2rzFQxr1xbQvuDRRfwb2B4iu4N1B8BffG2ZX/D5nsj+K1j31VAAAAAElFTkSuQmCC" alt="" />
所以我就把我的TLE的程序当标程挂在这了~~~
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int sum[],q[];
int n,L;
double mid;
double C(int i)
{
return sum[i]*1.0-mid*i;
}
int h,t;
bool IS_OK(double x)
{
h=;t=;
for(int i=L;i<=n;i++)
{
while(h<=t&&C(q[t])<=C(i))t--;
q[++t]=i;
}
for(int i=;i<=n-L+;i++)
{
if(q[h]-i+<L)h++;
if(C(q[h])-C(i-)>=)
return true;
}
return false;
}
int main()
{
double lo,hi;
while(~scanf("%d%d",&n,&L)){
lo=1.0,hi=2000.0;
for(int i=;i<=n;i++){
scanf("%d",&sum[i]);
lo=min(sum[i]*1.0,lo);
hi=max(sum[i]*1.0,hi);
} for(int i=;i<=n;i++)
sum[i]+=sum[i-]; while(hi-lo>=0.01)
{
mid=(lo+hi)/2.0;
if(IS_OK(mid))lo=mid;
else hi=mid;
}
printf("%.2f\n",hi);
}
return ;
}
数据结构:HDU 2993 MAX Average Problem的更多相关文章
-
hdu 2993 MAX Average Problem(斜率DP入门题)
题目链接:hdu 2993 MAX Average Problem 题意: 给一个长度为 n 的序列,找出长度 >= k 的平均值最大的连续子序列. 题解: 这题是论文的原题,请参照2004集训 ...
-
HDU 2993 MAX Average Problem dp斜率优化
MAX Average Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
-
HDU 2993 MAX Average Problem(斜率优化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Problem Description Consider a simple sequence w ...
-
HDU 2993 - MAX Average Problem - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Consider a simple sequence which only contains p ...
-
HDU 2993 MAX Average Problem(斜率优化DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 题目大意:给定一个长度为n(最长为10^5)的正整数序列,求出连续的最短为k的子序列平均值的最大 ...
-
HDU 2993 MAX Average Problem(斜率DP经典+输入输出外挂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 题目大意:给出n,k,给定一个长度为n的序列,从其中找连续的长度大于等于k的子序列使得子序列中的 ...
-
MAX Average Problem(斜率优化dp)
MAX Average Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
-
BNUOJ 3958 MAX Average Problem
MAX Average Problem Time Limit: 3000ms Memory Limit: 65536KB 64-bit integer IO format: %lld Jav ...
-
hdu2993 MAX Average Problem (斜率dp)
参考:http://www.cnblogs.com/kuangbin/archive/2012/08/27/2657878.html //#pragma warning (disable: 4786) ...
随机推荐
-
恢复CRM plugin
1 使用工具 XrmToolbox http://xrmtoolbox.codeplex.com/releases/view/611881 2 连接:可以使用网络连接,也可以使用本地连接 3 使用 A ...
-
Socket原理与编程基础(转)
一.Socket简介 Socket是进程通讯的一种方式,即调用这个网络库的一些API函数实现分布在不同主机的相关进程之间的数据交换. 几个定义: (1)IP地址:即依照TCP/IP协议分配给本地主机的 ...
-
UCloud EIP 你真的懂得如何使用么? - SegmentFault
UCloud EIP 你真的懂得如何使用么? - SegmentFault UCloud EIP 你真的懂得如何使用么?
-
CF 61E 树状数组+离散化 求逆序数加强版 三个数逆序
http://codeforces.com/problemset/problem/61/E 题意是求 i<j<k && a[i]>a[j]>a[k] 的对数 会 ...
-
Android学习之DragEvent
关于DragEvent Google Android API中是这么说的 Represents an event that is sent out by the system at various t ...
-
zabbix自动发现及其自动注册
在大企业环境中,不可能在zabbix页面上逐个添加被监控的主机.还好zabbix自带自动发现和自动注册功能 被监控端安装zabbix客户端之后,将配置文件配置指向服务器端ip即可.红色箭头改为zabb ...
-
redis两种持久化
Redis 提供了不同级别的持久化方式: RDB持久化方式能够在指定的时间间隔能对你的数据进行快照存储. AOF持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据 ...
-
分布式配置 Spark 2.0版本 2.1版本 1.6版本
apache的各个软件各个版本下载: http://archive.apache.org/dist/ 1.下载spark. sudo tar -zxf ~/下载/spark-2.0.2-bin-wi ...
-
ubuntu6.4系统安装JIRA-7.8
一.系统环境: system version:ubuntu6.4 openjdk version (java版本) :1.8.0_191 mysql version:14.14 jira vers ...
-
从零开始学 Web 之 CSS(五)可见性、内容移除、精灵图、属性选择器、滑动门
大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...