关于Maven的使用就不再啰嗦了,网上很多,并且这么多年变化也不大,这里仅介绍怎么搭建Hadoop的开发环境。
1. 首先创建工程
2. 然后在pom.xml文件里添加hadoop的依赖包hadoop-common, hadoop-client, hadoop-hdfs,添加后的pom.xml文件如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
<project xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance" xmlns= "http://maven.apache.org/POM/4.0.0"
xsi:schemaLocation= "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd" >
<modelVersion> 4.0 . 0 </modelVersion>
<groupId>my.hadoopstudy</groupId>
<artifactId>hadoopstudy</artifactId>
<packaging>jar</packaging>
<version> 1.0 -SNAPSHOT</version>
<name>hadoopstudy</name>
<url>http: //maven.apache.org</url>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version> 2.5 . 1 </version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version> 2.5 . 1 </version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version> 2.5 . 1 </version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version> 3.8 . 1 </version>
<scope>test</scope>
</dependency>
</dependencies>
</project>
|
3. 测试
3.1 首先我们可以测试一下hdfs的开发,这里假定使用上一篇Hadoop文章中的hadoop集群,类代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
package my.hadoopstudy.dfs;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import java.io.InputStream;
import java.net.URI;
public class Test {
public static void main(String[] args) throws Exception {
String uri = "hdfs://9.111.254.189:9000/" ;
Configuration config = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), config);
// 列出hdfs上/user/fkong/目录下的所有文件和目录
FileStatus[] statuses = fs.listStatus( new Path( "/user/fkong" ));
for (FileStatus status : statuses) {
System.out.println(status);
}
// 在hdfs的/user/fkong目录下创建一个文件,并写入一行文本
FSDataOutputStream os = fs.create( new Path( "/user/fkong/test.log" ));
os.write( "Hello World!" .getBytes());
os.flush();
os.close();
// 显示在hdfs的/user/fkong下指定文件的内容
InputStream is = fs.open( new Path( "/user/fkong/test.log" ));
IOUtils.copyBytes(is, System.out, 1024 , true );
}
}
|
3.2 测试MapReduce作业
测试代码比较简单,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
package my.hadoopstudy.mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
public class EventCount {
public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable( 1 );
private Text event = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
int idx = value.toString().indexOf( " " );
if (idx > 0 ) {
String e = value.toString().substring( 0 , idx);
event.set(e);
context.write(event, one);
}
}
}
public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0 ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2 ) {
System.err.println( "Usage: EventCount <in> <out>" );
System.exit( 2 );
}
Job job = Job.getInstance(conf, "event count" );
job.setJarByClass(EventCount. class );
job.setMapperClass(MyMapper. class );
job.setCombinerClass(MyReducer. class );
job.setReducerClass(MyReducer. class );
job.setOutputKeyClass(Text. class );
job.setOutputValueClass(IntWritable. class );
FileInputFormat.addInputPath(job, new Path(otherArgs[ 0 ]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[ 1 ]));
System.exit(job.waitForCompletion( true ) ? 0 : 1 );
}
}
|
运行“mvn package”命令产生jar包hadoopstudy-1.0-SNAPSHOT.jar,并将jar文件复制到hadoop安装目录下
这里假定我们需要分析几个日志文件中的Event信息来统计各种Event个数,所以创建一下目录和文件
/tmp/input/event.log.1
/tmp/input/event.log.2
/tmp/input/event.log.3
因为这里只是要做一个列子,所以每个文件内容可以都一样,假如内容如下
JOB_NEW ...
JOB_NEW ...
JOB_FINISH ...
JOB_NEW ...
JOB_FINISH ...
然后把这些文件复制到HDFS上
运行mapreduce作业
查看执行结果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.kongxx.info/blog/?p=186