pickel加速caffe读图

时间:2023-03-09 20:25:32
pickel加速caffe读图

64*64*3小图(12KB),batchSize=128,训练样本100万,

全部load进来内存受不了,load一次需要大半天

训练时读入一个batch,ali云服务器上每个batch读入时间1.9~3.2s不等,迭代一次2s多

由于有多个label不能用caffe自带的lmdb转了,输入是自己写的python层,试着用pickel

import os, sys
import cv2
import numpy as np
import numpy.random as npr
import cPickle as pickle
wk_dir = "/Users/xxx/wkspace/caffe_space/detection/caffe/data/1103reg64/"
InputSize = int(sys.argv[1])
BatchSize = int(sys.argv[2])
trainfile = "train.txt"
testfile = "test.txt"
print "gen imdb with for net input:", InputSize, "batchSize:", BatchSize with open(wk_dir+trainfile, 'r') as f:
trainlines = f.readlines()
with open(wk_dir+testfile, 'r') as f:
testlines = f.readlines()
#######################################
# we seperate train data by batchsize #
#######################################
to_dir = wk_dir + "/trainIMDB/"
if not os.path.isdir(to_dir):
os.makedirs(to_dir) train_list = []
cur_ = 0
sum_ = len(trainlines)
for line in trainlines:
cur_ += 1
words = line.split()
image_file_name = words[0]
im = cv2.imread(wk_dir + image_file_name)
h,w,ch = im.shape
if h!=InputSize or w!=InputSize:
im = cv2.resize(im,(InputSize,InputSize))
roi = [float(words[2]),float(words[3]),float(words[4]),float(words[5])]
train_list.append([im, roi])
if (cur_ % BatchSize == 0):
print "write batch:" , cur_/BatchSize
fid = open(to_dir +'train'+ str(BatchSize) + '_'+str(cur_/BatchSize),'w')
pickle.dump(train_list, fid)
fid.close()
train_list[:] = [] print len(train_list), "train data generated\n" ###########################
# tests #
###########################
to_dir = wk_dir + "/testIMDB/"
if not os.path.isdir(to_dir):
os.makedirs(to_dir)
test_list = []
cur_ = 0
sum_ = len(testlines)
for line in testlines:
cur_ += 1
words = line.split()
image_file_name = words[0]
im = cv2.imread(wk_dir + image_file_name)
h,w,ch = im.shape
if h!=InputSize or w!=InputSize:
im = cv2.resize(im,(InputSize,InputSize))
roi = [float(words[2]),float(words[3]),float(words[4]),float(words[5])]
test_list.append([im, roi]) if (cur_ % BatchSize == 0):
print "write batch:", cur_ / BatchSize
fid = open(to_dir +'test'+ str(BatchSize) + '_'+str(cur_/BatchSize), 'w')
pickle.dump(test_list, fid)
fid.close()
test_list[:] = []
print len(test_list), "test data generated\n"

每个batch生成4.8MB的块(约比128张原图占3倍磁盘空间):

pickel加速caffe读图

训练时读入,ali云训练每个batch时间变为0.2s,可加速10倍

mac上是ssd硬盘,本来读图就很快,一个batch 0.05s, 改成pickel后反而变慢了,load一个batch需要0.2s。