poj3468,poj2528

时间:2023-09-16 17:13:38

其实这两题都是基础的线段树,但对于我这个线段树的初学者来说,总结一下还是很有用的;

poj3468显然是线段树区间求和,区间更改的问题,而poj2528是对区间染色,问有多少种颜色的问题;

线段树的建立和求和附代码,还是比较简单的;

这里想说的是区间修改,用到了了lazy思想:打标记;

拿poj2528举例,比如对区间[l,r]染色,我们只要在线段树中,被[l,r]覆盖的最大子区间[p,q]上标记被染成了什么颜色即可,不需要再往下遍历[p,q]的左右孩子;当下次修改影响到了区间[p,q]时(区间有交集),说明[p,q]一定不会全都维持原来的颜色。我们将标记向下传递给左右孩子(同时自身标记清除),不断传递下去,直至某个区间完全被要修改区间覆盖,,再给这个区间打上新的标记。这样可保证时间复杂度为O(logn);

总之lazy思想的精髓就是,能不往下访问就不访问,要更改的时候再将子节点更改,从而减少时间复杂度;

 var lazy,tree:array[..] of int64;
l,n,m,j,x,a,b,i:longint;
ans:int64;
c:char;
procedure pushdown(l,r,i:longint);
var m:longint;
begin
m:=(l+r) div ;
if lazy[i]= then exit;
lazy[i*]:=lazy[i*]+lazy[i];
lazy[i*+]:=lazy[i*+]+lazy[i];
tree[i*]:=tree[i*]+lazy[i]*(m-l+);
tree[i*+]:=tree[i*+]+lazy[i]*(r-m);
lazy[i]:=;
end; procedure build(i,l,r:longint);
var m:longint;
begin
if l=r then read(tree[i])
else begin
m:=(l+r) div ;
build(i*,l,m);
build(*i+,m+,r);
tree[i]:=tree[*i]+tree[*i+];
end;
end; function find(i,l,r,l1,r1:longint):int64;
var m:longint;
t:int64;
begin
if (l>=l1) and (r<=r1) then exit(tree[i])
else begin
pushdown(l,r,i);
m:=(l+r) div ;
t:=;
if l1<=m then t:=t+find(*i,l,m,l1,r1);
if r1>m then t:=t+find(*i+,m+,r,l1,r1);
exit(t);
end;
end; procedure work(i,l,r,l1,r1,x:longint);
var m:longint;
begin
if (l1<=l) and (r<=r1) then
begin
lazy[i]:=lazy[i]+x;
tree[i]:=tree[i]+(r-l+)*x;
end
else begin
pushdown(l,r,i);
m:=(l+r) div ;
if (l1<=m) then work(i*,l,m,l1,r1,x);
if (r1>m) then work(i*+,m+,r,l1,r1,x);
tree[i]:=tree[i*]+tree[i*+];
end;
end; begin
readln(n,m);
build(,,n);
readln;
fillchar(lazy,sizeof(lazy),);
for i:= to m do
begin
read(c);
if c='Q' then
begin
read(a,b);
ans:=find(,,n,a,b);
writeln(ans);
end
else if c='C' then
begin
read(a,b,j);
work(,,n,a,b,j);
end;
readln;
end;
end.

poj3468

而poj2528还要复杂一点,简单的建立线段树会爆空间,这需要我们把出现的区间离散化,减小空间复杂度。

 var tree:array[..] of integer;
    x,y:array[..] of longint;
    a:array[..] of longint;         //表示离散化乎的标号对应的区间
    f:array[..] of boolean;
    ff:array[..] of boolean;
    i,j,k,n,t,s:longint;
procedure sort(l,r: longint);
  var i,j,x,y: longint;
  begin
    i:=l;
    j:=r;
    x:=a[(l+r) div ];
    repeat
      while a[i]<x do inc(i);
      while x<a[j] do dec(j);
      if not(i>j) then
      begin
        y:=a[i];
        a[i]:=a[j];
        a[j]:=y;
        inc(i);
        j:=j-;
      end;
    until i>j;
    if l<j then sort(l,j);
    if i<r then sort(i,r);
  end;
procedure putdown(i,p,q:longint);         //传递标记
  begin
    if p<>q then
    begin
      tree[i*]:=tree[i];
      tree[i*+]:=tree[i];
      tree[i]:=;
    end;
  end;
procedure build(i,p,q,l,r,x:longint);
  var m:longint;
  begin
    if (a[p]>=l) and (r>=a[q]) then tree[i]:=x
    else begin
      if tree[i]<> then putdown(i,p,q);
      m:=(p+q) div ;
      if l<=a[m] then
      begin
        build(i*,p,m,l,r,x);
      end;
      if r>a[m] then
      begin
        build(i*+,m+,q,l,r,x);
      end;
    end;
  end;
procedure dfs(i,p,q:longint);              //统计多少可见海报
  var m:longint;
  begin
    if (tree[i]>) and not ff[tree[i]] then
    begin
      s:=s+;
      ff[tree[i]]:=true;
    end
    else if (tree[i]=) and (p<>q) then
    begin
      m:=(p+q) div ;
      dfs(i*,p,m);
      dfs(i*+,m+,q);
    end;
  end;
begin
  readln(t);
  for i:= to t do
  begin
    k:=;
    fillchar(f,sizeof(f),false);
    readln(n);                        
    for j:= to n do 
    begin
      readln(x[j],y[j]);
      if not f[x[j]] then                        //离散化
      begin
        k:=k+;
        a[k]:=x[j];
        f[x[j]]:=true;
      end;
      if not f[y[j]] then
      begin
        k:=k+;
        a[k]:=y[j];
        f[y[j]]:=true;
      end;
    end;
    sort(,k);
    fillchar(tree,sizeof(tree),);
    for j:= to n do                     
      build(,,k,x[j],y[j],j);
    s:=;
    fillchar(ff,sizeof(ff),false);
    dfs(,,k);
    writeln(s);
  end;
end.

poj2528