本文实例为大家分享了tensorflow神经网络实现mnist分类的具体代码,供大家参考,具体内容如下
只有两层的神经网络,直接上代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#引入包
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#引入input_data文件
from tensorflow.examples.tutorials.mnist import input_data
#读取文件
mnist = input_data.read_data_sets( 'F:/mnist/data/' ,one_hot = True )
#定义第一个隐藏层和第二个隐藏层,输入层输出层
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784
n_classes = 10
#由于不知道输入图片个数,所以用placeholder
x = tf.placeholder( "float" ,[ None ,n_input])
y = tf.placeholder( "float" ,[ None ,n_classes])
stddev = 0.1
#定义权重
weights = {
'w1' :tf.Variable(tf.random_normal([n_input,n_hidden_1],stddev = stddev)),
'w2' :tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2],stddev = stddev)),
'out' :tf.Variable(tf.random_normal([n_hidden_2,n_classes],stddev = stddev))
}
#定义偏置
biases = {
'b1' :tf.Variable(tf.random_normal([n_hidden_1])),
'b2' :tf.Variable(tf.random_normal([n_hidden_2])),
'out' :tf.Variable(tf.random_normal([n_classes])),
}
print ( "Network is Ready" )
#前向传播
def multilayer_perceptrin(_X,_weights,_biases):
layer1 = tf.nn.sigmoid(tf.add(tf.matmul(_X,_weights[ 'w1' ]),_biases[ 'b1' ]))
layer2 = tf.nn.sigmoid(tf.add(tf.matmul(layer1,_weights[ 'w2' ]),_biases[ 'b2' ]))
return (tf.matmul(layer2,_weights[ 'out' ]) + _biases[ 'out' ])
#定义优化函数,精准度等
pred = multilayer_perceptrin(x,weights,biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred,labels = y))
optm = tf.train.GradientDescentOptimizer(learning_rate = 0.001 ).minimize(cost)
corr = tf.equal(tf.argmax(pred, 1 ),tf.argmax(y, 1 ))
accr = tf.reduce_mean(tf.cast(corr, "float" ))
print ( "Functions is ready" )
#定义超参数
training_epochs = 80
batch_size = 200
display_step = 4
#会话开始
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#优化
for epoch in range (training_epochs):
avg_cost = 0.
total_batch = int (mnist.train.num_examples / batch_size)
for i in range (total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
feeds = {x:batch_xs,y:batch_ys}
sess.run(optm,feed_dict = feeds)
avg_cost + = sess.run(cost,feed_dict = feeds)
avg_cost = avg_cost / total_batch
if (epoch + 1 ) % display_step = = 0 :
print ( "Epoch:%03d/%03d cost:%.9f" % (epoch,training_epochs,avg_cost))
feeds = {x:batch_xs,y:batch_ys}
train_acc = sess.run(accr,feed_dict = feeds)
print ( "Train accuracy:%.3f" % (train_acc))
feeds = {x:mnist.test.images,y:mnist.test.labels}
test_acc = sess.run(accr,feed_dict = feeds)
print ( "Test accuracy:%.3f" % (test_acc))
print ( "Optimization Finished" )
|
程序部分运行结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
|
Train accuracy: 0.605
Test accuracy: 0.633
Epoch: 071 / 080 cost: 1.810029302
Train accuracy: 0.600
Test accuracy: 0.645
Epoch: 075 / 080 cost: 1.761531130
Train accuracy: 0.690
Test accuracy: 0.649
Epoch: 079 / 080 cost: 1.711757494
Train accuracy: 0.640
Test accuracy: 0.660
Optimization Finished
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Missayaaa/article/details/80065319