TCO14 2C L2: CliqueGraph,graph theory, clique

时间:2022-09-30 14:33:56

称号:http://community.topcoder.com/stat?c=problem_statement&pm=13251&rd=16017

參考:http://apps.topcoder.com/wiki/display/tc/TCO+2014+Round+2C

假设用先计算出每条边,用邻接矩阵来表示图,然后用BFS或 Floyd-Warshall算法来计算距离的话。时间复杂度是O(N^3),会超时。依据题名的提示知要利用clique graph的性质来做。基本思想是在BFS的时候将一个clique看成一个总体。一旦訪问到clique中的一个点,则这个clique中全部点的距离都能够得到。算法描写叙述例如以下

for each source vertex s:

    mark all vertices and all cliques as unvisited

    start BFS from s

    when processing a vertex v during the BFS:

        for each unvisited clique C that contains v:

            mark C as visited

            use edges in C to discover new vertices

代码:

#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <iostream>
#include <sstream>
#include <iomanip> #include <bitset>
#include <string>
#include <vector>
#include <stack>
#include <deque>
#include <queue>
#include <set>
#include <map> #include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
using namespace std; #define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC)
typedef pair<int, int> pii;
typedef long long llong;
typedef pair<llong, llong> pll;
#define mkp make_pair /*************** Program Begin **********************/
bool visited_vertex[5001];
bool visited_clique[5001]; class CliqueGraph {
public:
long long calcSum(int N, vector <int> V, vector <int> sizes) {
long long res = 0;
vector <int> S(sizes.size() + 1);
S[0] = 0;
for (int i = 0; i < sizes.size(); i++) {
S[i + 1] += S[i] + sizes[i];
}
vector <vector<int>> cliques(sizes.size()); // clique i 包括的点
vector <vector<int>> vcliques(N); // 包括点v的cliques
for (int i = 0; i < sizes.size(); i++) {
for (int j = S[i]; j < S[i + 1]; j++) {
cliques[i].push_back(V[j]);
vcliques[ V[j] ].push_back(i);
}
} for (int src = 0; src < N; src++) {
vector <int> D(N, 123456789);
D[src] = 0;
memset(visited_vertex, 0, sizeof(visited_vertex));
memset(visited_clique, 0, sizeof(visited_clique));
queue <int> Q;
Q.push(src);
visited_vertex[src] = true;
while (!Q.empty()) {
int v = Q.front();
Q.pop();
// 更新全部包括v的cliques中的全部点
for (int i = 0; i < vcliques[v].size(); i++) {
int c = vcliques[v][i]; // 包括v的cliques
if (visited_clique[c]) {
continue;
}
visited_clique[c] = true;
for (int j = 0; j < cliques[c].size(); j++) {
int u = cliques[c][j]; // clique c z中的的点
if (visited_vertex[u]) {
continue;
}
visited_vertex[u] = true;
D[u] = D[v] + 1;
Q.push(u);
}
}
}
for (int i = 0; i < N; i++) {
res += D[i];
}
}
return res / 2;
};
}; /************** Program End ************************/

版权声明:本文博主原创文章,博客,未经同意不得转载。