bzoj 1874 取石子游戏 题解 & SG函数初探

时间:2022-05-03 21:05:42

【原题】

1874: [BeiJing2009 WinterCamp]取石子游戏

Time Limit: 5 Sec  Memory Limit: 162 MB

Submit: 334  Solved: 122

[Submit][Status]

Description

小H和小Z正在玩一个取石子游戏。 取石子游戏的规则是这种,每一个人每次能够从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏。 小H先进行操作,他想问你他是否有必胜策略,假设有,第一步怎样取石子。

Input

输入文件的第一行为石子的堆数N 接下来N行,每行一个数Ai,表示每堆石子的个数 接下来一行为每次取石子个数的种类数M 接下来M行,每行一个数Bi,表示每次能够取的石子个数,输入保证这M个数依照递增顺序排列。

Output

输出文件第一行为“YES”或者“NO”,表示小H是否有必胜策略。 若结果为“YES”,则第二行包括两个数,第一个数表示从哪堆石子取,第二个数表示取多少个石子,若有多种答案,取第一个数最小的答案,若仍有多种答案,取第二个数最小的答案。

Sample Input

4

7

6

9

3

2

1

2


Sample Output

YES

1 1



Hint

例子*同拥有四堆石子,石子个数分别为7、6、9、3,每人每次能够从不论什么一堆石子中取出1个或者2个石子,小H有必胜策略,其实仅仅要从第一堆石子中取一个石子就可以。



数据规模和约定

数据编号 N范围 Ai范围 数据编号 N范围 Ai范围

1 N=2 Ai≤10 6 N≤10 Ai≤10

2 N=2 Ai≤1000 7 N≤10 Ai≤100

3 N=3 Ai≤100 8 N≤10 Ai≤1000

4 N≤10 Ai≤4 9 N≤10 Ai≤1000

5 N≤10 Ai≤7 10 N≤10 Ai≤1000

对于所有数据,M≤10,Bi≤10

HINT

Source

【分析】事实上我是心血来潮想大概学一下博弈论有关的题目。

博文推荐:http://www.cnblogs.com/frog112111/p/3199780.html

首先是最简单的Nim游戏:有N堆石子,每次从一堆中取出不为空的石子,不能取者为负。推断先手是否必胜。有一个小小的结论:后手必胜当且仅当全部石子的异或和为0。

再麻烦一点。规定每次取的石子个数,比方每次仅仅能取1,3,4。我们先考虑仅仅有一堆石子。

(下面摘自那个博客)

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。比如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。



对于一个给定的有向无环图,定义关于图的每一个顶点的Sprague-Grundy函数g例如以下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]



sg[0]=0,f[]={1,3,4},



x=1时,能够取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,能够取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,能够取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,能够取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,能够取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

   x         0  1  2  3  4  5  6  7  8....

sg[x]        0  1  0  1  2  3  2  0  1....

在这里,那个异或和的结论还是正确的。假设sg[N]=0,那么就存在后手必胜的策略。

可是假设有多堆石子,应该怎么办?直接把所有的SG所有异或起来,也是推断是否是0。

知道了这些结论,那道题也就成了傻题。前面是裸的SG,后面再枚举一下就可以。

【代码】

#include<cstdio>
#define N 1005
using namespace std;
int sg[N],f[N],hash[N],a[N],sum,temp,i,j,n,m;
void get_SG(int up)
{
sg[0]=0;
for (int i=1;i<=up;i++)
{
for (int j=1;f[j]<=i&&j<=m;j++)
hash[sg[i-f[j]]]=i;
for (int j=0;j<=up;j++)
if (hash[j]!=i) {sg[i]=j;break;}
}
}
int main()
{
scanf("%d",&n);
for (i=1;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for (i=1;i<=m;i++)
scanf("%d",&f[i]);
get_SG(1000);
for (i=1;i<=n;i++) sum^=sg[a[i]];
if (!sum) {printf("NO");return 0;}
for (i=1;i<=n;i++)
{
temp=sum^sg[a[i]];
for (j=1;f[j]<=a[i]&&j<=m;j++)
if (!(temp^sg[a[i]-f[j]]))
{
printf("YES\n%d %d",i,f[j]);
return 0;
}
}
}

bzoj 1874 取石子游戏 题解 &amp; SG函数初探的更多相关文章

  1. &lbrack;BZOJ 1874&rsqb; &lbrack;BeiJing2009 WinterCamp&rsqb; 取石子游戏 【博弈论 &vert; SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  2. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

  3. BZOJ 1874 取石子游戏 (NIM游戏)

    题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...

  4. &lbrack;BZOJ 1188&rsqb; &lbrack;HNOI2007&rsqb; 分裂游戏 【博弈论&vert;SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  5. BZOJ 1413 取石子游戏(DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...

  6. nyoj913 取石子(十) SG函数 &plus; Nimm博弈

    思路: 第一堆:SG = n % 3; 第二堆:无规律,打表即可,用hash比set快很多; 第三堆:SG = n; 第四堆:无规律 第五堆:SG = n % 2; 第六堆:SG = n % (i + ...

  7. 【洛谷2252&amp&semi;HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. BZOJ 1874&colon; &lbrack;BeiJing2009 WinterCamp&rsqb;取石子游戏 &lbrack;Nim游戏 SG函数&rsqb;

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  9. BZOJ 1874&colon; &lbrack;BeiJing2009 WinterCamp&rsqb;取石子游戏&lpar;SG函数&rpar;

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

随机推荐

  1. 从零开始山寨Caffe&&num;183&semi;拾贰:IO系统&lpar;四&rpar;

    消费者 回忆:生产者提*品的接口 在第捌章,IO系统(二)中,生产者DataReader提供了外部消费接口: class DataReader { public: ......... Blockin ...

  2. python 常见排序实例

    使用Python 基础排序算法设计,冒泡排序,插入排序,快速排序... 需求 对一组无序数据进行排序算法设计,要求如下: 输入:[1, 3, 5, 23, 75, 34, 456, 86, 22, 7 ...

  3. 第三百三十九天 how can I 坚持

    脑子里老是无缘无故浮现出之前学的古文,之前只是傻学了,什么都没搞懂啊. 吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也. 是故弟子不必不如师,师不必贤于弟子,闻道有先 ...

  4. asp中的几个取整函数fix&lpar;&rpar;&comma;int&lpar;&rpar;&comma;round&lpar;&rpar;的用法

    asp中的几个取整函数是:fix(),int(),round(); Int(number).Fix(number)函数返回数字的整数部分.number 参数可以是任意有效的数值表达式.如果 numbe ...

  5. Quartus II 11&period;0破发点(不同的是低版本号)

    小订单: 近期用到了黑金的altera飓风4带的开发板,套件里面带的Quartus II软件版本号为11.0,之前所用版本号为9.1,所以打算吧11.0版本号也安装一下.没想到这个破解的过程让我属实蛋 ...

  6. photosho 等距复制或旋转复制

    选区是不可以复制的,不过可以用这个方法:1.新建图层,任意绘制一个图形2.ctrl+j复制一层,ctrl+T 切换到变形工具,移动或变形该图形后enter.3.按Alt+Shift+ctrl+T.4. ...

  7. Material Theme 文件名的标签(tab)被大写了

    我们平时使用的都是小写的,今天第一次使用Material Theme 这个发现标签被大写了,百度后没找到然后自己找了找设置,解决了 原来是这样的, 设置如下 设置后: 希望能帮到有同样问题的同学

  8. ACM-ICPC 2018 南京赛区网络预赛 I Skr &lpar;马拉车&plus;hash去重&rpar;或&lpar;回文树&rpar;

    https://nanti.jisuanke.com/t/30998 题意 给一串由0..9组成的数字字符串,求所有不同回文串的权值和.比如说“1121”这个串中有“1”,“2”,“11”,“121” ...

  9. apache多站点vhost&period;conf配置

    #第1个站点的配置 <VirtualHost *:80> DocumentRoot "D:/phpStudy/WWW" ServerName localhost &lt ...

  10. OpenCV 图像特效

    1.RGB ->灰度 #灰度 方式1 img=cv2.imread('b.png',0) img1=cv2.imread('b.png',1) height=img1.shape[0] widt ...