python环形单链表的约瑟夫问题详解

时间:2022-06-23 20:31:06

题目:

一个环形单链表,从头结点开始向后,指针每移动一个结点,就计数加1,当数到第m个节点时,就把该结点删除,然后继续从下一个节点开始从1计数,循环往复,直到环形单链表中只剩下了一个结点,返回该结点。

这个问题就是著名的约瑟夫问题。

代码:

首先给出环形单链表的数据结构:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
class Node(object):
 def __init__(self, value, next=0):
  self.value = value
  self.next = next # 指针
 
class RingLinkedList(object):
 # 链表的数据结构
 def __init__(self):
  self.head = 0 # 头部
 
 def __getitem__(self, key):
  if self.is_empty():
   print 'Linked list is empty.'
   return
  elif key < 0 or key > self.get_length():
   print 'The given key is wrong.'
   return
  else:
   return self.get_elem(key)
 
 def __setitem__(self, key, value):
  if self.is_empty():
   print 'Linked list is empty.'
   return
  elif key < 0 or key > self.get_length():
   print 'The given key is wrong.'
   return
  else:
   return self.set_elem(key, value)
 
 def init_list(self, data): # 按列表给出 data
  self.head = Node(data[0])
  p = self.head # 指针指向头结点
  for i in data[1:]:
   p.next = Node(i) # 确定指针指向下一个结点
   p = p.next # 指针滑动向下一个位置
  p.next = self.head
 
 def get_length(self):
  p, length = self.head, 0
  while p != 0:
   length += 1
   p = p.next
   if p == self.head:
    break
  return length
 
 def is_empty(self):
  if self.head == 0:
   return True
  else:
   return False
 
 def insert_node(self, index, value):
  length = self.get_length()
  if index < 0 or index > length:
   print 'Can not insert node into the linked list.'
  elif index == 0:
   temp = self.head
   self.head = Node(value, temp)
   p = self.head
   for _ in xrange(0, length):
    p = p.next
   print "p.value", p.value
   p.next = self.head
  elif index == length:
   elem = self.get_elem(length-1)
   elem.next = Node(value)
   elem.next.next = self.head
  else:
   p, post = self.head, self.head
   for i in xrange(index):
    post = p
    p = p.next
   temp = p
   post.next = Node(value, temp)
 
 def delete_node(self, index):
  if index < 0 or index > self.get_length()-1:
   print "Wrong index number to delete any node."
  elif self.is_empty():
   print "No node can be deleted."
  elif index == 0:
   tail = self.get_elem(self.get_length()-1)
   temp = self.head
   self.head = temp.next
   tail.next = self.head
  elif index == self.get_length()-1:
   p = self.head
   for i in xrange(self.get_length()-2):
    p = p.next
   p.next = self.head
  else:
   p = self.head
   for i in xrange(index-1):
    p = p.next
   p.next = p.next.next
 
 def show_linked_list(self): # 打印链表中的所有元素
  if self.is_empty():
   print 'This is an empty linked list.'
  else:
   p, container = self.head, []
   for _ in xrange(self.get_length()-1): #
    container.append(p.value)
    p = p.next
   container.append(p.value)
   print container
 
 def clear_linked_list(self): # 将链表置空
  p = self.head
  for _ in xrange(0, self.get_length()-1):
   post = p
   p = p.next
   del post
  self.head = 0
 
 def get_elem(self, index):
  if self.is_empty():
   print "The linked list is empty. Can not get element."
  elif index < 0 or index > self.get_length()-1:
   print "Wrong index number to get any element."
  else:
   p = self.head
   for _ in xrange(index):
    p = p.next
   return p
 
 def set_elem(self, index, value):
  if self.is_empty():
   print "The linked list is empty. Can not set element."
  elif index < 0 or index > self.get_length()-1:
   print "Wrong index number to set element."
  else:
   p = self.head
   for _ in xrange(index):
    p = p.next
   p.value = value
 
 def get_index(self, value):
  p = self.head
  for i in xrange(self.get_length()):
   if p.value == value:
    return i
   else:
    p = p.next
  return -1

然后给出约瑟夫算法:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def josephus_kill_1(head, m):
 '''
 环形单链表,使用 RingLinkedList 数据结构,约瑟夫问题。
 :param head:给定一个环形单链表的头结点,和第m个节点被杀死
 :return:返回最终剩下的那个结点
 本方法比较笨拙,就是按照规定的路子进行寻找,时间复杂度为o(m*len(ringlinkedlist))
 '''
 if head == 0:
  print "This is an empty ring linked list."
  return head
 if m < 2:
  print "Wrong m number to play this game."
  return head
 p = head
 while p.next != p:
  for _ in xrange(0, m-1):
   post = p
   p = p.next
  #print post.next.value
  post.next = post.next.next
  p = post.next
 return p

分析:

我采用了最原始的方法来解决这个问题,时间复杂度为o(m*len(ringlinkedlist))。
但是实际上,如果确定了链表的长度以及要删除的步长,那么最终剩余的结点一定是固定的,所以这就是一个固定的函数,我们只需要根剧M和N确定索引就可以了,这个函数涉及到了数论,具体我就不细写了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/dongrixinyu/article/details/78717547