java源码学习(四)ArrayList

时间:2022-03-15 18:04:44

ArrayList

ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存。

ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类。

​ 以下分析的是JDK1.8ArrayList源码,跟JDK1.7的区别还是蛮大的。

一、定义

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
  • ArrayList<E>可以看出它是支持泛型的,它继承自AbstractList,实现了ListRandomAccessCloneableJava.io.Serializable接口
  • AbstractList提供了List接口的默认实现(个别方法为抽象方法)
  • List接口定义了列表必须实现的方法
  • RandomAccess是一个标记接口,接口内没有定义任何内容,支持快速随机访问,实际上就是通过下标序号进行快速访问
  • 实现了Cloneable接口的类,可以调用Object.clone方法返回该对象的浅拷贝
  • 通过实现 java.io.Serializable 接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或反序列化。序列化接口没有方法或字段,仅用于标识可序列化的语义

二、属性

	/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10; /**
* Shared empty array instance used for empty instances.
*/
private static final Object[] EMPTY_ELEMENTDATA = {}; /**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*/
transient Object[] elementData; // non-private to simplify nested class access /**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
  • ArrayList提供了2个私有属性,elementDatasize;很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量(实际数量而非容量)
  • transient关键字的作用:在采用Java默认的序列化机制的时候,被该关键字修饰的属性不会被序列化。

三、构造方法

ArrayList提供了三个构造方法:

    // 带容量参数的构造方法
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
// 创建一个空数组
this.elementData = EMPTY_ELEMENTDATA;
} else {
// 参数小于0,抛出异常
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
} // 默认无参构造方法,创建一个容量为10的数组
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
} // 集合作为参数的构造方法,集合转化为Object[]
// c为null throws NullPointerException
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray 不一定返回的是Object[]
if (elementData.getClass() != Object[].class)
// 数组复制到 elementData
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// c的长度为0,创建容量为0的数组
this.elementData = EMPTY_ELEMENTDATA;
}
}

​ 第一个构造方法使用initialCapacity来初始化elementData数组的大小;

​ 第二个构造方法创建一个空的容量为10的elementData数组;

​ 第三个构造方法将提供的集合转成数组并给elementData(返回若不是Object[],则转换为Object[]);

四、方法详细介绍

1. 元素存储

关于ArrayList元素的存储,提供了5个方法:

public E set(int index, E element)
public boolean add(E e)
public void add(int index, E element)
public boolean addAll(Collection<? extends E> c)
public boolean addAll(int index, Collection<? extends E> c)

set方法,替换元素

    // 用指定的元素替代此列表中指定位置上的元素,并返回以前位于该位置上的元素
public E set(int index, E element) {
rangeCheck(index); E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
} // 检验index是否在范围内,不校验index为负数的情况,index为负数由数组校验
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} // 返回指定位置上的元素
E elementData(int index) {
return (E) elementData[index];
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}

add(E e)方法,尾部添加元素

    // 添加元素到列表的尾部,并返回true
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!(这注释还两感叹号)
elementData[size++] = e;
return true;
} private void ensureCapacityInternal(int minCapacity) {
// 若是默认容量为10,则minCapacity取minCapacity和DEFAULT_CAPACITY最大值
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
} ensureExplicitCapacity(minCapacity);
} // 记录容量扩容次数(Fast Fail机制,多线程)
protected transient int modCount = 0; private void ensureExplicitCapacity(int minCapacity) {
// 扩容次数+1
modCount++; // 若需要的容量大于目前elementData的容量,则进行扩容
if (minCapacity - elementData.length > 0)
grow(minCapacity);
} // ArrayList容量的最大值(为啥是这个值设定?)
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 扩容到指定容量(有溢出处理)
private void grow(int minCapacity) {
int oldCapacity = elementData.length;
// oldCapacity >> 1相当于 oldCapacity / 2,则下面的就是扩容50%
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 若扩容50%还没到minCapacity,则扩容minCapacity
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 扩容容量 大于最大容量(溢出处理)
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 扩容容量elementData
elementData = Arrays.copyOf(elementData, newCapacity);
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // 溢出处理
throw new OutOfMemoryError();
// 扩容的容量是否大于最大数组容量,是则返回整型最大值,否则返回最大数组容量
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}

add(int index, E element)方法,指定位置添加元素

    public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!!
// index后面的元素往后下标+1并复制到elementData
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 参数element赋值给指定位置的elementData
elementData[index] = element;
// 数组实际长度+1
size++;
} // 校验索引下标范围(不能大于数组实际大小以及小于0,是就抛出异常)
// 方法用于 add 和 addAll
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

public static native void arraycopy(Object src, int srcPos, Object dest, int destPos, int length);

  • 此方法是System类提供的native方法,用于copy数组所用

  • src:源数组; srcPos:源数组要复制的起始位置; dest:目的数组; destPos:目的数组放置的起始位置; length:复制的长度

  • 此方法的功能就是把destdestPosdestPos+length的元素用src数组的srcPos位置开始替换

  • arraycopy调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。

    public class ArrayCopyTest {
    
    	public static void main(String[] args) {
    char[] c1 = new String("123456").toCharArray();
    char[] c2 = new String("abcdef").toCharArray();
    System.arraycopy(c1,2 , c2, 1, 2);
    for(char c : c1){
    System.out.print(c);
    }
    System.out.println();
    for(char c : c2){
    System.out.print(c);
    }
    }
    }

    结果为:

    123456

    a34def

addAll(Collection<? extends E> c)方法,尾部按顺序添加所有集合元素

	// c为null 会抛出NullPointerException
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
// 扩容
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);// 数组copy
size += numNew;// elementData实际大小size增加
return numNew != 0;// 返回是否有新元素添加
}

addAll(int index, Collection<? extends E> c)方法,指定位置按顺序添加所有集合元素

    // c为null 会抛出NullPointerException
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);// 校验索引下标范围 Object[] a = c.toArray();
int numNew = a.length;
// 扩容
ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index;
// elementData数组index后面的元素移动到elementData的末端
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
// 添加的集合c中的所有元素index到index+numNewcopy进来
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;// elementData实际大小size增加
return numNew != 0;// 返回是否有新元素添加
}

2. 元素读取

    // 返回数组index所在的元素
public E get(int index) {
rangeCheck(index);// 校验index是否越界 return elementData(index);
}
// 检验index是否在范围内,不校验index为负数的情况,index为负数由数组校验
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} // 返回指定位置上的元素
E elementData(int index) {
return (E) elementData[index];
}

3. 元素删除

关于ArrayList元素的删除,提供了4个方法:

public E remove(int index)
public boolean remove(Object o)
public void clear()
public boolean removeAll(Collection<?> c)
public boolean retainAll(Collection<?> c)

remove(int index)方法,删除指定位置的元素

    public E remove(int index) {
rangeCheck(index);// 校验index向上是否越界,越界则抛出异常 modCount++;// 扩容的时候++,删除也++,记录操作次数
E oldValue = elementData(index);// 获取指定位置的元素 int numMoved = size - index - 1;
// elementData index后面的元素向前移动一位
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// --size,elementData尾部元素置为null,GC可以回收
elementData[--size] = null; return oldValue;// 返回已删除的元素
}

remove(Object o)方法,删除数组中第一个为o的元素

    public boolean remove(Object o) {
// 遍历数组,删除第一个为null的元素并返回
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 遍历数组,删除第一个为o的元素(用equals判断)并返回
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
// 遍历结束还没有找到o,则返回false,elementData中元素没做任何变动
return false;
} // 私有方法,快速删除index所在的元素,跟上面的remove方法大致逻辑一下,不返回已删除元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}

clear()方法,删除列表中所有的元素

    public void clear() {
modCount++;// 记录操作次数 // 遍历列表,每个元素都置为null,GC进行回收
for (int i = 0; i < size; i++)
elementData[i] = null;
// 列表size置为0
size = 0;
}

removeAll方法,删除传入参数集合中的所有元素

    public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);// 判断c是否为null,null抛出NullPointerException
// 删除集合中所有元素,这些元素也在c中,取elementData和c的差集即 elementData - c
return batchRemove(c, false);
} private boolean batchRemove(Collection<?> c, boolean complement) {
// 新建一个不可变引用,指向List的 elementData数组
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
// 根据complement参数判断是否保留elementData[r]元素
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// c.contains() 抛出异常处理
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
// 下标size-w后面的元素置为空,gc回收;w=size则表示没有元素变动
if (w != size) {
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;// 相当于执行了多次remove操作
size = w;
modified = true;
}
}
return modified;// 返回elementData是否有元素变更
}

retainAll方法,删除非传入参数集合中的所有元素

    public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);// 判断c是否为null,null抛出NullPointerException
return batchRemove(c, true);
}

4. 序列化与反序列化

​ ArrayList的序列化重写了writeObject和readObject方法;

​ transient不被序列化

writeObject

    private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();// 调用默认的序列化方法 // 写入数组实际长度
s.writeInt(size); // 真正的序列化操作
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
} if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}

readObject

    private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff
s.defaultReadObject(); // Read in capacity
s.readInt(); // ignored if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size); Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}

5. 获取元素索引值

indexOf

    // 返回列表中第一个与o相同的元素所在的索引;如果列表不包含o,则返回-1
public int indexOf(Object o) {
// o为null,返回列表中第一个为null元素的下标
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

lastIndexOf

    // 返回列表中最后一个与o相同的元素所在的索引;如果列表不包含o,则返回-1
public int lastIndexOf(Object o) {
// 倒序遍历
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

contains

    // 返回列表是否包含o元素,index = -1则返回false
public boolean contains(Object o) {
return indexOf(o) >= 0;
}

6. ArrayList转化为数组

Object[] toArray()

    public Object[] toArray() {
// 调用Arrays数组copy
return Arrays.copyOf(elementData, size);
}

**<T> T[] toArray(T[] a) ** 泛型转化

    public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}

7. 其他方法

    // elementData扩容后会有多余的容量未使用;把elementData的容量减少到size(实际容量)
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
// 返回列表实际大小size
public int size() {
return size;
}
// 返回列表是否为空
public boolean isEmpty() {
return size == 0;
} // ArrayList 浅copy
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
// elementData copy
v.elementData = Arrays.copyOf(elementData, size);
// modCount操作次数
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
} // protect方法 列表数组移除元素(fromIndex到toIndex)
// list.sublist(fromIndex, toIndex).clear()这个方法底层调用
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
} // 获取元素列表迭代器
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
} // 返回一个列表迭代器,FastFail机制
public ListIterator<E> listIterator() {
return new ListItr(0);
} // 返回一个迭代器,FastFail机制
public Iterator<E> iterator() {
return new Itr();
} // 截取列表
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
} @Override
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
} /**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new ArrayListSpliterator<>(this, 0, -1, 0);
} @Override
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
} // shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
} return anyToRemove;
} @Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
} // 列表排序
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}

五、参考资料

http://blog.csdn.net/jzhf2012/article/details/8540410

http://www.cnblogs.com/xujian2014/p/4625346.html

http://blog.csdn.net/u014082714/article/details/52253331

http://www.cnblogs.com/java-zhao/p/5102342.html

java源码学习(四)ArrayList的更多相关文章

  1. Java源码系列1——ArrayList

    本文简单介绍了 ArrayList,并对扩容,添加,删除操作的源代码做分析.能力有限,欢迎指正. ArrayList是什么? ArrayList 就是数组列表,主要用来装载数据.底层实现是数组 Obj ...

  2. 在IDEA中搭建Java源码学习环境并上传到GitHub上

    打开IDEA新建一个项目 创建一个最简单的Java项目即可 在项目命名填写该项目的名称,我这里写的项目名为Java_Source_Study 点击Finished,然后在项目的src目录下新建源码文件 ...

  3. Java 源码学习线路————&lowbar;先JDK工具包集合&lowbar;再core包,也就是String、StringBuffer等&lowbar;Java IO类库

    http://www.iteye.com/topic/1113732 原则网址 Java源码初接触 如果你进行过一年左右的开发,喜欢用eclipse的debug功能.好了,你现在就有阅读源码的技术基础 ...

  4. 集合框架源码学习之ArrayList

    目录: 0-0-1. 前言 0-0-2. 集合框架知识回顾 0-0-3. ArrayList简介 0-0-4. ArrayList核心源码 0-0-5. ArrayList源码剖析 0-0-6. Ar ...

  5. Java 源码学习系列(三)——Integer

    Integer 类在对象中包装了一个基本类型 int 的值.Integer 类型的对象包含一个 int 类型的字段. 此外,该类提供了多个方法,能在 int 类型和 String 类型之间互相转换,还 ...

  6. Java源码阅读之ArrayList

    基于jdk1.8的ArrayList源码分析. 实现List接口最常见的大概就四种,ArrayList, LinkedList, Vector, Stack实现,今天就着重看一下ArrayList的源 ...

  7. 【java集合框架源码剖析系列】java源码剖析之ArrayList

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本. 本博客将从源码角度带领大家学习关于ArrayList的知识. 一ArrayList类的定义: public class Arr ...

  8. JDK源码学习笔记——ArrayList&sol;Vector

    一.类定义 public class ArrayList<E> extends AbstractList<E> implements List<E>, Random ...

  9. 【Java源码】集合类-ArrayList

    一.类继承关系 public class ArrayList<E> extends AbstractList<E> implements List<E>, Rand ...

随机推荐

  1. bootstrap ace treeview树表

    html部分 <div class="widget-main padding-8" style="height:400px;overflow-y: scroll;& ...

  2. eclipse格式化代码

    在Eclipse下安装.使用Jalopy方法 http://hi.baidu.com/zdz8207/item/c2972e172ad3efdcbf9042d6 http://www.cnblogs. ...

  3. HDU 4283 You are the one(间隔DP)

    标题效果: The TV shows such as You Are the One has been very popular. In order to meet the need of boys ...

  4. 《写给大家看的设计书&lpar;第3版&rpar;》【PDF】下载

    <写给大家看的设计书(第3版)>[PDF]下载链接: https://u253469.ctfile.com/fs/253469-231196355 内容简介 <写给大家看的设计书&g ...

  5. opencv之人脸识别

    最近在做一个类似于智能广告投放的项目,简单思路是利用opencv获取摄像头图像,然后调用接口或利用其他一些离线模型进行人脸属性识别,进而投放广告.本篇先简单介绍利用opecv进行人脸识别. # -*- ...

  6. &lbrack;Draft&rsqb;iOS&period;Architecture&period;16&period;Truth-information-flow-and-clear-responsibilities-immutability

    Concept: Truth, Information Flow, Clear Responsibilities and Immutability 1. Truth 1.1 Single Source ...

  7. &lbrack;android&rsqb; 插入一条记录到系统短信应用里

    谷歌市场上有这些应用,模拟短信,原理就是把数据插入到短信应用的数据库里 获取ContentResolver对象,通过getContentResolver()方法 调用resolver对象的insert ...

  8. Pyhton核心编程-Chap2习题-DIY

    在学Python,在看<Python核心编程>的pdf,做了Chap2的题目,答案为DIY # Filename: 2-11.py # Author: ChrisZZ mylist = [ ...

  9. 的NodeJS异步数据库函数需要同步的答案 &plus;

    我是新来的NodeJS和我写,需要从我去过的所有的函数应该是在这种情况下,读QUERY我的MySQL数据库,并返回代码,我非常希望服务器能够对其他事件作出回应而这个地方是轨迹查询请求.然而,它并不特别 ...

  10. kubernetes-ingress(十)

    ingress https://kubernetes.io/docs/concepts/services-networking/ingress/ pod与ingress的关系 •通过label-sel ...