贝塞尔曲线初探

时间:2022-01-26 17:47:56



相信很多同学都知道“贝塞尔曲线”这个词,我们在很多地方都能经常看到。但是,可能并不是每位同学都清楚地知道,到底什么是“贝塞尔曲线”,又是什么特点让它有这么高的知名度。

贝塞尔曲线的数学基础是早在 1912 年就广为人知的伯恩斯坦多项式。但直到 1959 年,当时就职于雪铁龙的法国数学家 Paul de Casteljau 才开始对它进行图形化应用的尝试,并提出了一种数值稳定的 de Casteljau 算法。然而贝塞尔曲线的得名,却是由于 1962 年另一位就职于雷诺的法国工程师 Pierre Bézier 的广泛宣传。他使用这种只需要很少的控制点就能够生成复杂平滑曲线的方法,来辅助汽车车体的工业设计。

正是因为控制简便却具有极强的描述能力,贝塞尔曲线在工业设计领域迅速得到了广泛的应用。不仅如此,在计算机图形学领域,尤其是矢量图形学,贝塞尔曲线也占有重要的地位。今天我们最常见的一些矢量绘图软件,如 Flash、Illustrator、CorelDraw 等,无一例外都提供了绘制贝塞尔曲线的功能。甚至像 Photoshop 这样的位图编辑软件,也把贝塞尔曲线作为仅有的矢量绘制工具(钢笔工具)包含其中。

贝塞尔曲线在 web 开发领域同样占有一席之地。CSS3 新增了 transition-timing-function 属性,它的取值就可以设置为一个三次贝塞尔曲线方程。在此之前,也有不少JavaScript 动画库使用贝塞尔曲线来实现美观逼真的缓动效果。

下面我们就通过例子来了解一下如何用 de Casteljau 算法绘制一条贝塞尔曲线。

在平面内任选 3 个不共线的点,依次用线段连接。贝塞尔曲线初探

在第一条线段上任选一个点 D。计算该点到线段起点的距离 AD,与该线段总长 AB 的比例。贝塞尔曲线初探

根据上一步得到的比例,从第二条线段上找出对应的点 E,使得 AD:AB=
BE:BC
贝塞尔曲线初探

连接这两点 DE。贝塞尔曲线初探

从新的线段 DE 上再次找出相同比例的点 F,使得 DF:DE=
AD:AB= BE:BC
贝塞尔曲线初探

到这里,我们就确定了贝塞尔曲线上的一个点 F。接下来,请稍微回想一下中学所学的极限知识,让选取的点 D 在第一条线段上从起点 A 移动到终点 B,找出所有的贝塞尔曲线上的点 F。所有的点找出来之后,我们也得到了这条贝塞尔曲线。贝塞尔曲线初探

如果你实在想象不出这个过程,没关系,看动画!贝塞尔曲线初探

回过头来看这条贝塞尔曲线,为了确定曲线上的一个点,需要进行两轮取点的操作,因此我们称得到的贝塞尔曲线为二次曲线(这样记忆很直观,但曲线的次数其实是由前面提到的伯恩斯坦多项式决定的)。

当控制点个数为 4 时,情况是怎样的?贝塞尔曲线初探

步骤都是相同的,只不过我们每确定一个贝塞尔曲线上的点,要进行三轮取点操作。如图,AE:AB=
BF:BC= CG:CD= EH:EF=
FI:FG= HJ:HI
,其中点 J 就是最终得到的贝塞尔曲线上的一个点。贝塞尔曲线初探

这样我们得到的是一条三次贝塞尔曲线。贝塞尔曲线初探

看过了二次和三次曲线,更高次的贝塞尔曲线大家应该也知道要怎么画了吧。那么比二次曲线更简单的一次(线性)贝塞尔曲线存在吗?长什么样?根据前面的介绍,只要稍作思考,想必你也能猜出来了。哈!就是一条直线~贝塞尔曲线初探

能画曲线也能画直线,是不是很厉害?要绘制更复杂的曲线,控制点的增加也仅仅是线性的。这一特点使其不光在工业设计领域大展拳脚,就连数学基础不好的人也可以比较容易地掌握,比如大多数平面美术设计师们。贝塞尔曲线初探

上面介绍的内容并不足以展示贝塞尔曲线的真正威力。推广到三维空间的贝塞尔曲面,以及更进一步的非均匀有理 B 样条(NURBS),早已成为当今计算机辅助设计(CAD)的行业标准,不论是我们平常用到的各种产品,还是在电影院看到的精彩大片,都少不了它们的功劳。贝塞尔曲线初探

贝塞尔曲线初探

动态绘制贝塞尔曲线的在线演示








贝塞尔曲线,可以通过三个点,来确定一条平滑的曲线。在计算机图形学应该有讲。是图形开发中的重要工具。

实现的是一个图形做圆周运动。不过不是简单的关键帧动画那样,是计算出了很多点,当然还是用的关键帧动画,即使用CAKeyframeAnimation。有了贝塞尔曲线的支持,可以赋值给CAKeyframeAnimation 贝塞尔曲线的Path引用。

用贝塞尔曲线画圆,是一种特殊情况,我的做法是通过贝塞尔曲线得到4个半圆的曲线,它们合成的路径就是整个圆。

以下是动画部分的代码:

- (void) doAnimation {
    CAKeyframeAnimation *animation=[CAKeyframeAnimation animationWithKeyPath:@"position"];
    animation.duration=10.5f;
    animation.removedOnCompletion = NO;
    animation.fillMode = kCAFillModeForwards;
    animation.repeatCount=HUGE_VALF;// repeat forever
    animation.calculationMode = kCAAnimationCubicPaced;
   
    CGMutablePathRef curvedPath = CGPathCreateMutable();
    CGPathMoveToPoint(curvedPath, NULL, 512, 184);

  //增加4个二阶贝塞尔曲线
    CGPathAddQuadCurveToPoint(curvedPath, NULL, 312, 184, 312, 384); 
    CGPathAddQuadCurveToPoint(curvedPath, NULL, 310, 584, 512, 584);
    CGPathAddQuadCurveToPoint(curvedPath, NULL, 712, 584, 712, 384);
    CGPathAddQuadCurveToPoint(curvedPath, NULL, 712, 184, 512, 184);
   
    animation.path=curvedPath;
   
    [flyStarLayer addAnimation:animation forKey:nil];
}

 

 

 

 

Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线 曲线定义:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。

 

 

以下公式中:B(t)t时间下 点的坐标;

 P0为起点,Pn为终点,Pi为控制点

一阶贝塞尔曲线(线段)

贝塞尔曲线初探

贝塞尔曲线初探

意义:由 P0 至 P1 的连续点, 描述的一条线段

 

 

二阶贝塞尔曲线(抛物线)

贝塞尔曲线初探

贝塞尔曲线初探

原理:由 P0 至 P1 的连续点 Q0,描述一条线段。 
      由 P1 至 P2 的连续点 Q1,描述一条线段。 
      由 Q0 至 Q1 的连续点 B(t),描述一条二次贝塞尔曲线。

 

经验:P1-P0为曲线在P0处的切线。

 

三阶贝塞尔曲线:

贝塞尔曲线初探

贝塞尔曲线初探

 

 

通用公式:

 

贝塞尔曲线初探

高阶贝塞尔曲线:

4阶曲线:

贝塞尔曲线初探

5阶曲线:

贝塞尔曲线初探

 

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/de-casteljau.html

 

Following the construction of a Bézier curve, the next important task is to find the point C(u) on the curve for a particular u. A simple way is to plug u into every basis function, compute the product of each basis function and its corresponding control point, and finally add them together. While this works fine, it is not numerically stable (i.e., could introduce numerical errors during the course of evaluating the Bernstein polynomials).

In what follows, we shall only write down the control point numbers. That is, the control points are 00 for P001 for P1, ..., 0i for Pi, ..., 0n for Pn. The 0s in these numbers indicate the initial or the 0-th iteration. Later on, it will be replaced with 123 and so on.

The fundamental concept of de Casteljau's algorithm is to choose a point C in line segment AB such that C divides the line segment AB in a ratio of u:1-u (i.e., the ratio of the distance between A and C and the distance between A and B is u). Let us find a way to determine the point C.

 

The vector from A to B is B - A. Since u is a ratio in the range of 0 and 1, point C is located at u(B - A). Taking the position of A into consideration, point C is A + u(B - A) = (1 - u)A + uB. Therefore, given a u, (1 - u)A + uB is the point C between A and B that divides AB in a ratio of u:1-u.

The idea of de Casteljau's algorithm goes as follows. Suppose we want to find C(u), where u is in [0,1]. Starting with the first polyline, 00-01-02-03...-0n, use the above formula to find a point 1i on the leg (i.e. line segment) from 0i to0(i+1) that divides the line segment 0i and 0(i+1) in a ratio of u:1-u. In this way, we will obtain n points 101112, ...., 1(n-1). They define a new polyline of n - 1 legs.

 

In the figure above, u is 0.4. 10 is in the leg of 00 and 0111 is in the leg of 01 and 02, ..., and 14 is in the leg of04 and 05. All of these new points are in blue.

The new points are numbered as 1i's. Apply the procedure to this new polyline and we shall get a second polyline of n - 1 points 2021, ..., 2(n-2) and n - 2 legs. Starting with this polyline, we can construct a third one of n - 2 points 30,31, ..., 3(n-3) and n - 3 legs. Repeating this process n times yields a single point n0. De Casteljau proved that this is the point C(u) on the curve that corresponds to u.

Let us continue with the above figure. Let 20 be the point in the leg of 10 and 11 that divides the line segment 10 and 11in a ratio of u:1-u. Similarly, choose 21 on the leg of 11 and 1222 on the leg of 12 and 13, and 23 on the leg of 13and 14. This gives a third polyline defined by 202122 and 23. This third polyline has 4 points and 3 legs. Keep doing this and we shall obtain a new polyline of three points 3031 and 32. From this fourth polyline, we have the fifth one of two points 40 and 41. Do it once more, and we have 50, the point C(0.4) on the curve.

This is the geometric interpretation of de Casteljau's algorithm, one of the most elegant result in curve design.

 

Actual Computation

Given the above geometric interpretation of de Casteljau's algorithm, we shall present a computation method, which is shown in the following figure.

 

First, all given control points are arranged into a column, which is the left-most one in the figure. For each pair of adjacent control points, draw a south-east bound arrow and a north-east bound arrow, and write down a new point at the intersection of the two adjacent arrows. For example, if the two adjacent points are ij and i(j+1), the new point is(i+1)j. The south-east (resp., north-east) bound arrow means multiplying 1 - u (resp.u) to the point at its tail, ij(resp.i(j+1)), and the new point is the sum.

Thus, from the initial column, column 0, we compute column 1; from column 1 we obtain column 2 and so on. Eventually, aftern applications we shall arrive at a single point n0 and this is the point on the curve. The following algorithm summarizes what we have discussed. It takes an array P of n+1 points and a u in the range of 0 and 1, and returns a point on the Bézier curve C(u).

 

  •  
    •  Q
          [
      i
          ] := 
      P
          [
      i
          ]; // save input 

      •  Q
            [
        i
            ] := (1 - 
        u
            )
        Q
            [
        i
            ] + 
        u
             
        Q
            [
        i
           + 1];
        for i := 0 to n - k do 
      Input: array P[0:n] of n+1 points and real number u in [0,1] 
      Output: point on curve, C(u
      Working: point array Q[0:n

      for i := 0 to n do 
      for
       k := 1 to n do 
      return Q
      [0];

 

A Recurrence Relation

The above computation can be expressed recursively. Initially, let  P 0,j be  P j for  j = 0, 1, ...,  n. That is,  P 0,j is the  j-th entry on column 0. The computation of entry  j on column  i is the following:

 

More precisely, entry Pi,j is the sum of (1-u)Pi-1,j (upper-left corner) and uPi-1,j+1 (lower-left corner). The final result (i.e., the point on the curve) is Pn,0. Based on this idea, one may immediately come up with the following recursive procedure:

 

  •  
    •  
      •  return P0,j
             

        return
             (1-
        u
            )*
         deCasteljau
            (
        i
            -1,
        j
            ) + 
        u
            *
         deCasteljau
            (
        i
            -1,
        j
          +1)
        if i = 0 then 
        else
         
      function deCasteljau(i,j
      begin 
      end

This procedure looks simple and short; however, it is extremely inefficient. Here is why. We start with a call todeCasteljau(n,0) for computing Pn,0. The else part splits this call into two more calls, deCasteljau(n-1,0) for computing Pn-1,0 and deCasteljau(n-1,1) for computing Pn-1,1.

 

Consider the call to deCasteljau(n-1,0). It splits into two more calls, deCasteljau(n-2,0) for computing Pn-2,0 anddeCasteljau(n-2,1) for computing Pn-2,1. The call to deCasteljau(n-1,1) splits into two calls, deCasteljau(n-2,1) for computing Pn-2,1 and deCasteljau(n-2,2) for computing Pn-2,2. Thus, deCasteljau(n-2,1) is called twice. If we keep expanding these function calls, we should discover that almost all function calls for computing Pi,j are repeated, not once but many times. How bad is this? In fact, the above computation scheme is identical to the following way of computing then-th Fibonacci number:

  •  
    •  
      •  return
             1 

        return
             
        Fibonacci
             (
        n
            -1) + 
        Fibonacci
             (
        n
          -2)
        if n = 0 or n = 1 then 
        else
      function Fibonacci(n)
      beginend
This program takes an exponential number of function calls (an exercise) to compute  Fibonacci( n). Therefore, the above recursive version of de Casteljau's algorithm is  not suitable for direct implementation, although it looks simple and elegant!

 

An Interesting Observation

The triangular computation scheme of de Casteljau's algorithm offers an interesting observation. Take a look at the following computation on a Bézier curve of degree 7 defined by 8 control points 0001, ..., 07. Let us consider a set of consecutive points on the same column as the control points of a Bézier curve. Then, given a u in [0,1], how do we compute the corresponding point on this Bézier curve? If de Casteljau's algorithm is applied to these control points, the point on the curve is the opposite vertex of the equilateral's base formed by the selected points!

 

For example, if the selected points are 020304 and 05, the point on the curve defined by these four control points that corresponds to u is 32. See the blue triangle. If the selected points are 1112 and 13, the point on the curve is31. See the yellow triangle. If the selected points are 30313233 and 34, the point on the curve is 70.

By the same reason, 70 is the point on the Bézier curve defined by control points 60 and 61. It is also the point on the curve defined by 5051 and 52, and on the curve defined by 404142 and 43. In general, if we select a point and draw an equilateral as shown above, the base of this equilateral consists of the control points from which the selected point is computed.