虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹。那么,究竟什么是区块链呢?
区块链
更通俗的说,它是一个公开的数据库,新的数据存储在被称之为区块(block)的容器中,并被添加到一个不可变的链(chain)中(因此被称为区块链(blockchain)),之前添加的数据也在该链中。对于比特币或其它加密货币来说,这些数据就是一组组交易,不过,也可以是其它任何类型的数据。
区块链技术带来了全新的、完全数字化的货币,如比特币和莱特币(Litecoin),它们并不由任何中心机构管理。这给那些认为当今的银行系统是骗局并将最终走向失败的人带来了*。区块链也革命性地改变了分布式计算的技术形式,如以太坊(Ethereum)就引入了一种有趣的概念:智能合约(smart contract)。
在这篇文章中,我将用不到 50 行的 Python 2.x 代码实现一个简单的区块链,我把它叫做 SnakeCoin。
不到 50 行代码的区块链
我们首先将从定义我们的区块是什么开始。在区块链中,每个区块随同时间戳及可选的索引一同存储。在 SnakeCoin 中,我们会存储这两者。为了确保整个区块链的完整性,每个区块都会有一个自识别的哈希值。如在比特币中,每个区块的哈希是该块的索引、时间戳、数据和前一个区块的哈希值等数据的加密哈希值。这里提及的“数据”可以是任何你想要的数据。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
import hashlib as hasher
class Block:
def __init__( self , index, timestamp, data, previous_hash):
self .index = index
self .timestamp = timestamp
self .data = data
self .previous_hash = previous_hash
self . hash = self .hash_block()
def hash_block( self ):
sha = hasher.sha256()
sha.update( str ( self .index) +
str ( self .timestamp) +
str ( self .data) +
str ( self .previous_hash))
return sha.hexdigest()
import hashlib as hasher
class Block:
def __init__( self , index, timestamp, data, previous_hash):
self .index = index
self .timestamp = timestamp
self .data = data
self .previous_hash = previous_hash
self . hash = self .hash_block()
def hash_block( self ):
sha = hasher.sha256()
sha.update( str ( self .index) +
str ( self .timestamp) +
str ( self .data) +
str ( self .previous_hash))
return sha.hexdigest()
|
现在我们有了区块的结构了,不过我们需要创建的是一个区块链。我们需要把区块添加到一个实际的链中。如我们之前提到过的,每个区块都需要前一个区块的信息。但问题是,该区块链中的第一个区块在哪里?好吧,这个第一个区块,也称之为创世区块,是一个特别的区块。在很多情况下,它是手工添加的,或通过独特的逻辑添加的。
我们将创建一个函数来简单地返回一个创世区块解决这个问题。这个区块的索引为 0 ,其包含一些任意的数据值,其“前一哈希值”参数也是任意值。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import datetime as date
def create_genesis_block():
# Manually construct a block with
# index zero and arbitrary previous hash
return Block( 0 , date.datetime.now(), "Genesis Block" , "0" )
import datetime as date
def create_genesis_block():
# Manually construct a block with
# index zero and arbitrary previous hash
return Block( 0 , date.datetime.now(), "Genesis Block" , "0" )
|
现在我们可以创建创世区块了,我们需要一个函数来生成该区块链中的后继区块。该函数将获取链中的前一个区块作为参数,为要生成的区块创建数据,并用相应的数据返回新的区块。新的区块的哈希值来自于之前的区块,这样每个新的区块都提升了该区块链的完整性。如果我们不这样做,外部参与者就很容易“改变过去”,把我们的链替换为他们的新链了。这个哈希链起到了加密的证明作用,并有助于确保一旦一个区块被添加到链中,就不能被替换或移除。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def next_block(last_block):
this_index = last_block.index + 1
this_timestamp = date.datetime.now()
this_data = "Hey! I'm block " + str (this_index)
this_hash = last_block. hash
return Block(this_index, this_timestamp, this_data, this_hash)
def next_block(last_block):
this_index = last_block.index + 1
this_timestamp = date.datetime.now()
this_data = "Hey! I'm block " + str (this_index)
this_hash = last_block. hash
return Block(this_index, this_timestamp, this_data, this_hash)
|
这就是主要的部分。
现在我们能创建自己的区块链了!在这里,这个区块链是一个简单的 Python 列表。其第一个的元素是我们的创世区块,我们会添加后继区块。因为 SnakeCoin 是一个极小的区块链,我们仅仅添加了 20 个区块。我们通过循环来完成它。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
# Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[ 0 ]
# How many blocks should we add to the chain
# after the genesis block
num_of_blocks_to_add = 20
# Add blocks to the chain
for i in range ( 0 , num_of_blocks_to_add):
block_to_add = next_block(previous_block)
blockchain.append(block_to_add)
previous_block = block_to_add
# Tell everyone about it!
print "Block #{} has been added to the blockchain!" . format (block_to_add.index)
print "Hash: {}n" . format (block_to_add. hash )
# Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[ 0 ]
# How many blocks should we add to the chain
# after the genesis block
num_of_blocks_to_add = 20
# Add blocks to the chain
for i in range ( 0 , num_of_blocks_to_add):
block_to_add = next_block(previous_block)
blockchain.append(block_to_add)
previous_block = block_to_add
# Tell everyone about it!
print "Block #{} has been added to the blockchain!" . format (block_to_add.index)
print "Hash: {}n" . format (block_to_add. hash )
|
让我们看看我们的成果:
别担心,它将一直添加到 20 个区块
很好,我们的区块链可以工作了。如果你想要在主控台查看更多的信息,你可以编辑其完整的源代码并输出每个区块的时间戳或数据。
这就是 SnakeCoin 所具有的功能。要使 SnakeCoin 达到现今的产品级的区块链的高度,我们需要添加更多的功能,如服务器层,以在多台机器上跟踪链的改变,并通过工作量证明算法(POW)来限制给定时间周期内可以添加的区块数量。
如果你想了解更多技术细节,你可以在这里查看最初的比特币白皮书。
让这个极小区块链稍微变大些
这个极小的区块链及其简单,自然也相对容易完成。但是因其简单也带来了一些缺陷。首先,SnakeCoin 仅能运行在单一的一台机器上,所以它相距分布式甚远,更别提去中心化了。其次,区块添加到区块链中的速度同在主机上创建一个 Python 对象并添加到列表中一样快。在我们的这个简单的区块链中,这不是问题,但是如果我们想让 SnakeCoin 成为一个实际的加密货币,我们就需要控制在给定时间内能创建的区块(和币)的数量。
从现在开始,SnakeCoin 中的“数据”将是交易数据,每个区块的“数据”字段都将是一些交易信息的列表。接着我们来定义“交易”。每个“交易”是一个 JSON 对象,其记录了币的发送者、接收者和转移的 SnakeCoin 数量。注:交易信息是 JSON 格式,原因我很快就会说明。
1
2
3
4
5
6
7
8
9
10
11
12
|
{
"from" : "71238uqirbfh894-random-public-key-a-alkjdflakjfewn204ij" ,
"to" : "93j4ivnqiopvh43-random-public-key-b-qjrgvnoeirbnferinfo" ,
"amount" : 3
}
{
"from" : "71238uqirbfh894-random-public-key-a-alkjdflakjfewn204ij" ,
"to" : "93j4ivnqiopvh43-random-public-key-b-qjrgvnoeirbnferinfo" ,
"amount" : 3
}
|
现在我们知道了交易信息看起来的样子了,我们需要一个办法来将其加到我们的区块链网络中的一台计算机(称之为节点)中。要做这个事情,我们会创建一个简单的 HTTP 服务器,以便每个用户都可以让我们的节点知道发生了新的交易。节点可以接受 POST 请求,请求数据为如上的交易信息。这就是为什么交易信息是 JSON 格式的:我们需要它们可以放在请求信息中传递给服务器。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
$ pip install flask # 首先安装 Web 服务器框架
1
$ pip install flask # 首先安装 Web 服务器框架
Python
from flask import Flask
from flask import request
node = Flask(__name__)
# Store the transactions that
# this node has in a list
this_nodes_transactions = []
@node .route( '/txion' , methods = [ 'POST' ])
def transaction():
if request.method = = 'POST' :
# On each new POST request,
# we extract the transaction data
new_txion = request.get_json()
# Then we add the transaction to our list
this_nodes_transactions.append(new_txion)
# Because the transaction was successfully
# submitted, we log it to our console
print "New transaction"
print "FROM: {}" . format (new_txion[ 'from' ])
print "TO: {}" . format (new_txion[ 'to' ])
print "AMOUNT: {}\n" . format (new_txion[ 'amount' ])
# Then we let the client know it worked out
return "Transaction submission successful\n"
node.run()
from flask import Flask
from flask import request
node = Flask(__name__)
# Store the transactions that
# this node has in a list
this_nodes_transactions = []
@node .route( '/txion' , methods = [ 'POST' ])
def transaction():
if request.method = = 'POST' :
# On each new POST request,
# we extract the transaction data
new_txion = request.get_json()
# Then we add the transaction to our list
this_nodes_transactions.append(new_txion)
# Because the transaction was successfully
# submitted, we log it to our console
print "New transaction"
print "FROM: {}" . format (new_txion[ 'from' ])
print "TO: {}" . format (new_txion[ 'to' ])
print "AMOUNT: {}\n" . format (new_txion[ 'amount' ])
# Then we let the client know it worked out
return "Transaction submission successful\n"
node.run()
|
现在我们有了一种保存用户彼此发送 SnakeCoin 的记录的方式。这就是为什么人们将区块链称之为公共的、分布式账本:所有的交易信息存储给所有人看,并被存储在该网络的每个节点上。
但是,有个问题:人们从哪里得到 SnakeCoin 呢?现在还没有办法得到,还没有一个称之为 SnakeCoin 这样的东西,因为我们还没有创建和分发任何一个币。要创建新的币,人们需要“挖”一个新的 SnakeCoin 区块。当他们成功地挖到了新区块,就会创建出一个新的 SnakeCoin ,并奖励给挖出该区块的人(矿工)。一旦挖矿的矿工将 SnakeCoin 发送给别人,这个币就流通起来了。
我们不想让挖新的 SnakeCoin 区块太容易,因为这将导致 SnakeCoin 太多了,其价值就变低了;同样,我们也不想让它变得太难,因为如果没有足够的币供每个人使用,它们对于我们来说就太昂贵了。为了控制挖新的 SnakeCoin 区块的难度,我们会实现一个工作量证明(Proof-of-Work)(PoW)算法。工作量证明基本上就是一个生成某个项目比较难,但是容易验证(其正确性)的算法。这个项目被称之为“证明”,听起来就像是它证明了计算机执行了特定的工作量。
在 SnakeCoin 中,我们创建了一个简单的 PoW 算法。要创建一个新区块,矿工的计算机需要递增一个数字,当该数字能被 9 (“SnakeCoin” 这个单词的字母数)整除时,这就是最后这个区块的证明数字,就会挖出一个新的 SnakeCoin 区块,而该矿工就会得到一个新的 SnakeCoin。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
# ...blockchain
# ...Block class definition
miner_address = "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi"
def proof_of_work(last_proof):
# Create a variable that we will use to find
# our next proof of work
incrementor = last_proof + 1
# Keep incrementing the incrementor until
# it's equal to a number divisible by 9
# and the proof of work of the previous
# block in the chain
while not (incrementor % 9 = = 0 and incrementor % last_proof = = 0 ):
incrementor + = 1
# Once that number is found,
# we can return it as a proof
# of our work
return incrementor
@node .route( '/mine' , methods = [ 'GET' ])
def mine():
# Get the last proof of work
last_block = blockchain[ len (blockchain) - 1 ]
last_proof = last_block.data[ 'proof-of-work' ]
# Find the proof of work for
# the current block being mined
# Note: The program will hang here until a new
# proof of work is found
proof = proof_of_work(last_proof)
# Once we find a valid proof of work,
# we know we can mine a block so
# we reward the miner by adding a transaction
this_nodes_transactions.append(
{ "from" : "network" , "to" : miner_address, "amount" : 1 }
)
# Now we can gather the data needed
# to create the new block
new_block_data = {
"proof-of-work" : proof,
"transactions" : list (this_nodes_transactions)
}
new_block_index = last_block.index + 1
new_block_timestamp = this_timestamp = date.datetime.now()
last_block_hash = last_block. hash
# Empty transaction list
this_nodes_transactions[:] = []
# Now create the
# new block!
mined_block = Block(
new_block_index,
new_block_timestamp,
new_block_data,
last_block_hash
)
blockchain.append(mined_block)
# Let the client know we mined a block
return json.dumps({
"index" : new_block_index,
"timestamp" : str (new_block_timestamp),
"data" : new_block_data,
"hash" : last_block_hash
}) + "\n"
# ...blockchain
# ...Block class definition
miner_address = "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi"
def proof_of_work(last_proof):
# Create a variable that we will use to find
# our next proof of work
incrementor = last_proof + 1
# Keep incrementing the incrementor until
# it's equal to a number divisible by 9
# and the proof of work of the previous
# block in the chain
while not (incrementor % 9 = = 0 and incrementor % last_proof = = 0 ):
incrementor + = 1
# Once that number is found,
# we can return it as a proof
# of our work
return incrementor
@node .route( '/mine' , methods = [ 'GET' ])
def mine():
# Get the last proof of work
last_block = blockchain[ len (blockchain) - 1 ]
last_proof = last_block.data[ 'proof-of-work' ]
# Find the proof of work for
# the current block being mined
# Note: The program will hang here until a new
# proof of work is found
proof = proof_of_work(last_proof)
# Once we find a valid proof of work,
# we know we can mine a block so
# we reward the miner by adding a transaction
this_nodes_transactions.append(
{ "from" : "network" , "to" : miner_address, "amount" : 1 }
)
# Now we can gather the data needed
# to create the new block
new_block_data = {
"proof-of-work" : proof,
"transactions" : list (this_nodes_transactions)
}
new_block_index = last_block.index + 1
new_block_timestamp = this_timestamp = date.datetime.now()
last_block_hash = last_block. hash
# Empty transaction list
this_nodes_transactions[:] = []
# Now create the
# new block!
mined_block = Block(
new_block_index,
new_block_timestamp,
new_block_data,
last_block_hash
)
blockchain.append(mined_block)
# Let the client know we mined a block
return json.dumps({
"index" : new_block_index,
"timestamp" : str (new_block_timestamp),
"data" : new_block_data,
"hash" : last_block_hash
}) + "\n"
|
现在,我们能控制特定的时间段内挖到的区块数量,并且我们给了网络中的人新的币,让他们彼此发送。但是如我们说的,我们只是在一台计算机上做的。如果区块链是去中心化的,我们怎样才能确保每个节点都有相同的链呢?要做到这一点,我们会使每个节点都广播其(保存的)链的版本,并允许它们接受其它节点的链。然后,每个节点会校验其它节点的链,以便网络中每个节点都能够达成最终的链的共识。这称之为共识算法(consensus algorithm)。
我们的共识算法很简单:如果一个节点的链与其它的节点的不同(例如有冲突),那么最长的链保留,更短的链会被删除。如果我们网络上的链没有了冲突,那么就可以继续了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
@node .route( '/blocks' , methods = [ 'GET' ])
def get_blocks():
chain_to_send = blockchain
# Convert our blocks into dictionaries
# so we can send them as json objects later
for block in chain_to_send:
block_index = str (block.index)
block_timestamp = str (block.timestamp)
block_data = str (block.data)
block_hash = block. hash
block = {
"index" : block_index,
"timestamp" : block_timestamp,
"data" : block_data,
"hash" : block_hash
}
# Send our chain to whomever requested it
chain_to_send = json.dumps(chain_to_send)
return chain_to_send
def find_new_chains():
# Get the blockchains of every
# other node
other_chains = []
for node_url in peer_nodes:
# Get their chains using a GET request
block = requests.get(node_url + "/blocks" ).content
# Convert the JSON object to a Python dictionary
block = json.loads(block)
# Add it to our list
other_chains.append(block)
return other_chains
def consensus():
# Get the blocks from other nodes
other_chains = find_new_chains()
# If our chain isn't longest,
# then we store the longest chain
longest_chain = blockchain
for chain in other_chains:
if len (longest_chain) < len (chain):
longest_chain = chain
# If the longest chain wasn't ours,
# then we set our chain to the longest
blockchain = longest_chain
@node .route( '/blocks' , methods = [ 'GET' ])
def get_blocks():
chain_to_send = blockchain
# Convert our blocks into dictionaries
# so we can send them as json objects later
for block in chain_to_send:
block_index = str (block.index)
block_timestamp = str (block.timestamp)
block_data = str (block.data)
block_hash = block. hash
block = {
"index" : block_index,
"timestamp" : block_timestamp,
"data" : block_data,
"hash" : block_hash
}
# Send our chain to whomever requested it
chain_to_send = json.dumps(chain_to_send)
return chain_to_send
def find_new_chains():
# Get the blockchains of every
# other node
other_chains = []
for node_url in peer_nodes:
# Get their chains using a GET request
block = requests.get(node_url + "/blocks" ).content
# Convert the JSON object to a Python dictionary
block = json.loads(block)
# Add it to our list
other_chains.append(block)
return other_chains
def consensus():
# Get the blocks from other nodes
other_chains = find_new_chains()
# If our chain isn't longest,
# then we store the longest chain
longest_chain = blockchain
for chain in other_chains:
if len (longest_chain) < len (chain):
longest_chain = chain
# If the longest chain wasn't ours,
# then we set our chain to the longest
blockchain = longest_chain
|
我们差不多就要完成了。在运行了完整的 SnakeCoin 服务器代码之后,在你的终端可以运行如下代码。(假设你已经安装了 cCUL)。
1、创建交易
1
2
3
4
5
6
7
|
curl "localhost:5000/txion" \
- H "Content-Type: application/json" \
- d '{"from": "akjflw", "to":"fjlakdj", "amount": 3}'
curl "localhost:5000/txion" \
- H "Content-Type: application/json" \
- d '{"from": "akjflw", "to":"fjlakdj", "amount": 3}'
|
2、挖一个新区块
1
2
3
|
curl localhost: 5000 / mine
curl localhost: 5000 / mine
|
3、 查看结果。从客户端窗口,我们可以看到。
对代码做下美化处理,我们看到挖矿后我们得到的新区块的信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
{
"index" : 2 ,
"data" : {
"transactions" : [
{
"to" : "fjlakdj" ,
"amount" : 3 ,
"from" : "akjflw"
},
{
"to" : "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi" ,
"amount" : 1 ,
"from" : "network"
}
],
"proof-of-work" : 36
},
"hash" : "151edd3ef6af2e7eb8272245cb8ea91b4ecfc3e60af22d8518ef0bba8b4a6b18" ,
"timestamp" : "2017-07-23 11:23:10.140996"
}
{
"index" : 2 ,
"data" : {
"transactions" : [
{
"to" : "fjlakdj" ,
"amount" : 3 ,
"from" : "akjflw"
},
{
"to" : "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi" ,
"amount" : 1 ,
"from" : "network"
}
],
"proof-of-work" : 36
},
"hash" : "151edd3ef6af2e7eb8272245cb8ea91b4ecfc3e60af22d8518ef0bba8b4a6b18" ,
"timestamp" : "2017-07-23 11:23:10.140996"
}
|
大功告成!现在 SnakeCoin 可以运行在多个机器上,从而创建了一个网络,而且真实的 SnakeCoin 也能被挖到了。
你可以根据你的喜好去修改 SnakeCoin 服务器代码,并问各种问题了,好了本文暂时讲解一下Python实现类似比特币的加密货币区块链的创建与交易实例。
下一篇我们将讨论创建一个 SnakeCoin 钱包,这样用户就可以发送、接收和存储他们的 SnakeCoin 了