Difference Between Session.run and Tensor.eval

时间:2023-03-09 16:53:22
Difference Between Session.run and Tensor.eval

【Question】:

TensorFlow has two ways to evaluate part of graph: Session.run on a list of variables and Tensor.eval. Is there a difference between these two?

【Answer】:

If you have a Tensor t, calling t.eval() is equivalent to calling tf.get_default_session().run(t).

You can make a session the default as follows:

t = tf.constant(42.0)
sess = tf.Session()
with sess.as_default(): # or `with sess:` to close on exit
assert sess is tf.get_default_session()
assert t.eval() == sess.run(t)

The most important difference is that you can use sess.run() to fetch the values of many tensors in the same step:

t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.mul(t, u)
ut = tf.mul(u, t)
with sess.as_default():
tu.eval() # runs one step
ut.eval() # runs one step
sess.run([tu, ut]) # evaluates both tensors in a single step

Note that each call to eval and run will execute the whole graph from scratch. To cache the result of a computation, assign it to a tf.Variable.

----------------------------------------------------------

参考:

  1. http://blog.****.net/zcf1784266476/article/details/70259676