证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\rd \lm =\sedd{\ba{ll} |\sin x|,&-1<x<1,\\ \frac{1}{2}|\sin x|,&|x|=1,\\ 0,&|x|>1. \ea} \eex$$
相关文章
- [Everyday Mathematics]20150304
- [Compose] 21. Apply Natural Transformations in everyday work
- [Everyday Mathematic]20150212 求 $(\cos x+2)(\sin x+1)$ 的最大值
- [Everyday Mathematic]20150213
- 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(25):线性变换
- [Everyday Mathematics]20150214
- 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]
- 数学复习 ---- Mathematics Notes: A Programmer's Perspective ---- by Orzer ---- 我是沙茶
- [Everyday Mathematics]20150205
- Mathematics for Computer Graphics