HDU 4282 A very hard mathematic problem --枚举+二分(或不加)

时间:2023-03-11 16:25:50

题意:问方程X^Z + Y^Z + XYZ = K (X<Y,Z>1)有多少个正整数解 (K<2^31)

解法:看K不大,而且不难看出 Z<=30, X<=sqrt(K), 可以枚举X和Z,然后二分找Y,这样的话不把pow函数用数组存起来的话好像会T,可以先预处理出1~47000的2~30次幂,这样就不会T了。

但是还可以简化,当Z=2时,X^2+Y^2+2XY = (X+Y)^2 = K, 可以特判下Z= 2的情况,即判断K是否为平方数,然后Z就可以从3开始了,这样的话X^3+... = K的话,X就变为大概1000多了,大大减小了枚举的复杂度,这样的话,直接爆都不会T了,也可以二分,幂函数直接暴力都没事了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define lll __int64
using namespace std;
#define N 200007 lll k; int main()
{
lll x,y,z;
while(scanf("%I64d",&k)!=EOF && k)
{
lll kk = (lll)sqrt(1.0*k);
lll cnt = ;
if(kk*kk == k)
cnt += (kk-1LL)/2LL;
lll gen = 2000LL;
for(z=;z<=;z++)
{
for(x=;x<=gen;x++)
{
lll xz = x;
for(ll f=;f<z;f++)
{
xz = xz*x;
if(xz > k)
{
xz = k+1LL;
break;
}
}
if(xz > k) break;
lll low = x+1LL;
lll high = gen;
while(low<=high)
{
y = (low+high)/2LL;
lll yz = y;
for(ll f=;f<z;f++)
{
yz = yz*y;
if(yz > k)
{
yz = k+1LL;
break;
}
}
if(xz+yz+x*y*z == k)
{
cnt++;
break;
}
else if(xz+yz+x*y*z > k)
high = y-1LL;
else
low = y+1LL;
}
}
}
cout<<cnt<<endl;
}
return ;
}