http://www.patest.cn/contests/pat-b-practise/1019
给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
#include<cstdio> void splitDigit(int *a,int num) //4个数字按非递增排序
{
int i=;
while(num) a[i]=num%,num/=,i++;
for(int j=;j<;j++)
for(int k=;k<;k++)
if(a[k]<a[k+]) i=a[k],a[k]=a[k+],a[k+]=i;
} int getMax(int *a,int num)
{
num=;
for(int j=;j<;j++)
num=num*+a[j];
return num;
} int getMin(int *a,int num)
{
num=;
for(int j=;j>=;j--)
num=num*+a[j];
return num;
} int main()
{
int diff=,max=,min=,a[]={};
scanf("%d",&diff); do //至少循环进入一次
{
splitDigit(a,diff);//给定任一个各位数字不完全相同的4位正整数
max=getMax(a,diff);//如果我们先把4个数字按非递增排序
min=getMin(a,diff);//再按非递减排序
diff=max-min;//然后用第1个数字减第2个数字,将得到一个新的数字
printf("%04d - %04d = %04d\n",max,min,diff);
}while(diff && diff!=);//一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数 return ;
}